Effects of Hearing Aid BW on Speech Perception, Production, and Complex Auditory Skills

Pat Stelmachowicz, Ph.D.

Supported by NIH (R01 DC04300 & P30 DC04662)
BW Effects: Adult Studies

- **Degradation in performance**
 - Hogan & Turner, 1998; Ching et al., 1998)

- **Little improvement, but *no degradation* in performance**
 - Turner & Cummings, 1999; Baer et al., 2002; Vickers et al., 2001

- **Some improvement in performance**
Effect of stimulus BW on the perception of /s/

Stelmachowicz, Pittman, Hoover, & Lewis (JASA, 2001)
Importance of /s/ in language development

- 3rd or 4th most frequently occurring consonant in English
- Multiple linguistic uses
 - Plurality of nouns (cat; cats)
 - Third person present tense (I eat; she eats)
 - Present vs. past tense (She put it on; She puts it on)
 - To show possession (That is Mike’s)
 - Possessive pronouns (Is that Beth? Is that Beth’s?)
 - Contractions (that’s, let’s, it’s, what’s)
Methods

- **Stimuli**
 - /s, f, th/ in an /iɪ/ context (VC & CV)
 - 3 talkers (male, female, child)
 - LP filtered at 2, 3, 4, 5, 6, & 9 kHz
Bandwidth of /s/
Effect of Low-Pass Filtering

Stelmachowicz, et al.

(E & H, 2001)
Aided Perception of /s/ & /z/

Stelmachowicz, Pittman, Hoover, & Lewis
(Ear & Hearing, 2002)
Hearing-Impaired Children (5-13 yrs)

N= 40

Male talker
 - performance correlated with HL & SL at 2-4 kHz

Female talker
 - performance correlated with HL & SL at 2-8 kHz

Plural Score
Male talker
 87%
Female talker
 79%
To explore the effects of BW on four different auditory skills and to determine if the developmental trends observed for NH children differ from those of HI children.

- **Subjects**
 - 32 NH and 24 HI Children in 4 age groups: (7-8 yrs, 8-10 yrs, 11-12 yrs, & 13-14 yrs)

- **Methods**
 - Stimuli were filtered at either 5 or 10 kHz
 - Stimuli were frequency-shaped for HI listeners based on DSL targets and presented via wideband earphones
 (Stelmachowicz et al., Ear & Hearing, 2007)
Monosyllabic Word (PBK) Recognition

SNR = +8 dB
Fricative Perception (9 VCs)

SNR = +10 dB
BW effects on /s/ & /z/

![Bar graph showing the phoneme recognition of /s/ and /z/ for NHC and HIC with 5 kHz and 10 kHz frequencies.](image)
BW effects on /f/ & /v/
Listening Effort (Dual Task Paradigm)

SNR = +8 dB
Novel Word Learning Paradigm
Novel Word Learning

SNR = +10 dB
BTNRH Longitudinal Study

Speech & Language Development in Children w/ HL

● Purpose:
 - To compare phonetic and lexical foundations in normal-hearing and hearing-impaired children from 4 to 24 months of age

● Subjects
 - 21 children with normal hearing
 - 12 children aided before 12 months (Early)

Moeller et al., Ear & Hearing (2007)
Methods

Videotaped 30-minute sessions

- 6 to 8 week intervals starting at 4 mos
- Wireless lapel microphone worn with a baby vest
- Broad transcription using the International Phonetic Alphabet (3 transcribers)
Normal Hearing – 24 mos.

Place

- **Flosive**: p, b, t, d, k, g
- **Nasal**: m, n
- **Fricative**: f, v, ð, s, z, j, ʃ, ʒ, h
- **Approximant**: ð, ʃ, ʒ, j
- **Lateral Approximant**: ð, ʃ

Manner

- **Labiodental**
- **Dental**
- **Alveolar**
- **Post Alveolar**
- **Palatal**
- **Velar**
- **Glottal**

Hearing Level (dB)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing Level (dB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ID at birth, aided at 5 mos. - 24 mos.

<table>
<thead>
<tr>
<th>Manner</th>
<th>Bilabial</th>
<th>Labiodental</th>
<th>Dental</th>
<th>Post Alveolar</th>
<th>Alveolar</th>
<th>Palatal</th>
<th>Velar</th>
<th>Glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosive</td>
<td>p b</td>
<td></td>
<td>t d</td>
<td>k g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal</td>
<td>m</td>
<td></td>
<td>d</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fricative</td>
<td>f v θ ɔ s z j ʒ ǳ ʃ h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximant</td>
<td>r</td>
<td></td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaterApproximant</td>
<td>n</td>
<td></td>
<td>l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hearing Level (dB)

-20
-10
0

Frequency (Hz)

100
200
500
1000
2000
4000
8000
Results: Phonetic Development

![Graph showing phonetic development across age groups.

- Non-Fricatives (13): NH and HL groups show a trend of increasing percentage of sounds produced with age.
- Fricatives/Affricates (11): Similar trend observed for NH group, while HL group remains relatively constant.

Age Group (Months): 10-12, 14-16, 18-20, 22-24.

% Sounds Produced: 0, 20, 40, 60, 80, 100.

Legend: NH (filled circle), HL (open circle).]
Summary

- Despite early intervention and amplification, fricative acquisition for HI children is more delayed than other classes of phonemes & is delayed relative to children with normal hearing.
- The gap between NH and HI children is still apparent at 24 months.
- It is possible that the limited BW of hearing aids has contributed to these delays.
Bandwidth Problem

Possible Solutions:

– Extension of the high-frequency response of hearing aids – some devices in development

– Frequency compression/transposition – three devices are commercially available
Research Needs

- Improved methods for extending the high-frequency response of hearing aids
- Studies to evaluate the efficacy of extended HF bandwidth vs. frequency compression/transposition.
- Development and validation of clinically-feasible methods to assess and monitor speech development in infants and young children with hearing loss
Collaborators

Mary Pat Moeller, Ph.D.
Brenda Hoover, M.A.
Coille Putman, M.S.
Katie Arbataitis, M.A.
Greta Bohnenkamp, M.S.
Barbara Peterson, M.H.D.
Sharon Wood, M.S.
Dawna Lewis, Ph.D.
Andrea Pittman, Ph.D.
Sandy Estee, M.S.
Sangsook Choi, Ph.D.
Pat Stelmachowicz, Ph.D.
The End