Audiometric Configurations in Children

Andrea Pittman, Ph.D.
Arizona State University
Method

- **Groups**
 - 6-year-old children
 - 60-year-old adults

- **Audiogram Selection Criteria**
 - Right ear thresholds only
 - Thresholds for each octave test frequency (250-8000 Hz)
 - At least one threshold \geq 30 dB HL
 - Confirmed sensorinueral hearing loss by bone conduction audiometry
 - Air-bone gaps \leq 10 dB
Method

- Core Set of Audiograms
 - 227 children
 - 248 adults
- Analyses
 - Configuration
 - Asymmetry
 - Progression
Transducer Effects
Transducer Effects

- TDH Series Earphone
- NBS 9A Coupler
- 6cm³ Mic
*Transducer Effects

Frequency (Hz)

Hearing Level (dB)

2cm³

ER 3A

250 500 1000 2000 4000 8000

-20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

- Insert

- TDH
All Audiograms

Adults (n=248)

Children (n=227)
All Audiograms

Adults (n=248)

Frequency (Hz)

250 500 1000 2000 4000 8000

Children (n=227)

Frequency (Hz)

250 500 1000 2000 4000 8000

Hearing Level (dB HL)
All Audiograms

Adults (n=248)

Frequency (Hz)
250 500 1000 2000 4000 8000

Hearing Level (dB HL)

Children (n=227)

Frequency (Hz)
250 500 1000 2000 4000 8000

Hearing Level (dB HL)
All Audiograms

Adults (n=248)

Children (n=227)
All Audiograms

Adults (n=248)

Children (n=227)
Audiometric Classification

- Sloping
- Rising
- Flat
- U-Shaped
- Tent-Shaped
- Other
Results (Mean)

- Adults
- Children

- Frequency (Hz)
- Hearing Level (dB)

- Sloping
- Rising
- Flat
- U-Shaped
- Tent-Shaped
- Other
Results (Mean)

- Adults
- Children

Hearing Level (dB) vs. Frequency (Hz)

- Sloping
- Rising
- Flat
- U-Shaped
- Tent-Shaped
- Other
Results (Mean)

- **Adults**
- **Children**

Hearing Level (dB) vs. Frequency (Hz)

- **Sloping**
- **Rising**
- **Flat**
- **U-Shaped**
- **Tent-Shaped**
- **Other**
Results (Mean)

- Adults
- Children
Results (SD)

- Adults
- Children

Frequency (Hz)

Hearing Level (dB)

- Sloping
- Rising
- Flat
- U-Shaped
- Tent-Shaped
- Other

±1SD
Results (SD)

- **Adults**
- **Children**

Hearing Level (dB)
- **Sloping**
- **Rising**
- **U-Shaped**
- **Tent-Shaped**
- **Other**

Frequency (Hz)

Graphs show hearing level across different frequencies for different hearing patterns (Sloping, Rising, U-Shaped, Tent-Shaped, Other).
Results (SD)

- Adults
- Children

Frequency (Hz)

Hearing Level (dB)

Sloping

Rising

Flat

U-Shaped

Tent-Shaped

Other
Results (SD)

- **Adults**
- **Children**

Frequency (Hz)

Hearing Level (dB)

- **Sloping**
- **Rising**
- **Flat**
- **U-Shaped**
- **Tent-Shaped**
- **Other**
Sloping Losses

- **Sloping**
- **Rising**
- **Flat**
- **U-Shaped**
- **Tent-Shaped**
- **Other**
Sloping Losses
Adults

Children

Sloping Losses

![Graphs showing hearing levels for adults and children with different hearing patterns.](image-url)
Sloping Losses

- **Adults**: 73%
 - Sloping: 48%
 - All Other: 25%

- **Children**: 33%
 - Sloping: 19%
 - All Other: 14%

% of Audigrams:
- Sloping
- U-Shaped
- Tent-Shaped
- Flat
- Other
- Rising
Asymmetry
Asymmetry

4000 Hz

Adults

Children

Left-ear Threshold

Right-ear Threshold
Binaural Fitting Strategies

![Graph showing binaural fitting strategies with frequency on the x-axis and hearing level in dB on the y-axis, with data points for left and right ears at various frequencies.]
Progression

Baseline Audiogram (6-yr-old) Subsequent Audiogram

Frequency (Hz)

Hearing Level (dB)

Baseline Audiogram

Subsequent Audiogram

†5 †5 †20 †10 †20 †15
Progression

Change in Threshold (dB)

Age at Subsequent Audiogram (years)
Progression
Summary

• Configuration
 – Children had a wider variety of audiometric configurations

• Asymmetry
 – More children had asymmetric losses and those asymmetries were more severe

• Progression/Fluctuation
 – Thresholds increased and decreased on subsequent audiograms