Candidacy Considerations for Modern Implantable Hearing Technologies: An Otologist’s Perspective

Craig A. Buchman, MD
Professor

Department of Otolaryngology-Head & Neck Surgery
Disclosure

• I have no financial interest in any of the devices or companies discussed

• Consultant for Advanced Bionics, Cochlear, and MedEL Corporation as a Surgical Advisory Board Member

• Ongoing clinical trials with all 3 manufacturers
The Team

UNC Dept. of Otolaryngology / Head and Neck Surgery
 Oliver Adunka, MD
 John Grose, PhD
 Emily Buss, PhD
 Joseph Roche, MD
 Harold C. Pillsbury, MD
 Carlton Zdanski, MD

UNC Hospitals Audiology
 Patricia Roush AuD
 Corrine MacPherson AuD
 Sarah Martinho AuD
 Jill Ritch AuD
 Paula Johnson AuD

UNC Dept. of Radiology
 Benjamin Y. Huang, MD
 Mauricio Castillo, MD

Carolina Children's Communicative Disorders Program (CCCDP)
 Holly Teagle, AuD
 Deborah Hatch, AuD
 Lisa DiMaria, AuD
 Jennifer Woodard, AuD

Center for the Acquisition of Spoken language Through Listening Enrichment (CASTLE)
 Hannah Eskridge, SLP, AVT
 Lilian Henderson, SLP, AVT
Overview

• Available Implantable Auditory Devices
 » Neural stimulation (poor speech perception)
 • Cochlear Implants
 » Conventional Cochlear Implant*
 » Electroacoustic stimulation
 • Brainstem implants (no cochlear nerve)
 » Hair Cell Stimulation (preserved speech perception)
 • Bone Anchored Hearing Devices (BAHA)*
 • Active Middle Ear Implants
 » Electromagnetic
 » Piezoelectric

*Approved for use in children
Cochlear Implantation

• Candidacy Considerations in Children
• Current *clinical* research topics:
 » Expanding criteria
 » EAS/Hybrid & Hearing preservation
 » Tinnitus suppression
 » Unilateral hearing loss
• New Vaccination Indications
 » PCV-13
Criteria for Implantation in Children

- Severe to profound SNHL
- Limited benefit from hearing aids
- No active middle ear pathology
- Normal eighth nerve and present cochlea
So what’s the big deal?
Criteria for Implantation in Children

- Severe to profound SNHL → Pediatric audiologist
- Limited benefit from hearing aids → Speech pathologist
- No middle ear pathology
- Present cochlear nerve and cochlea

- This requires complex interdisciplinary teamwork.
- Must become conversant in others discipline
Essence of the Problem in Pediatric CI

Destroy Residual Hearing

Earlier Is Better
Earlier is Definitely Better
Reynell Developmental Language Scores

Pediatric Audiology Issues

• How sure are about the degree of hearing loss?
 » Are electrophysiological results sufficient?
 » Are the behavioral thresholds accurate?

• Amplification adequate?

• Auditory Neuropathy Spectrum Disorder
 » Auditory and biological uncertainty

• Comprehensive evaluation rather than relying on one test result!

• Lots of team discussion!
Mixed Hearing Loss
5 yo excellent BAHA user

1.5 yo → speech delay

ABR
 Clicks-NR
 Tone Bursts
 250 Hz-NR
 1K Hz-NR
 Bone-NR

ASSR-NR

CT-X-linked Gusher
Speech Pathology Issues

- What is an adequate hearing aid trial?
- Is the child making progress?
- How much progress with hearing aids is enough?

- Repeated diagnostic and therapeutic sessions from the beginning.
- Lots of team discussion!
MRI versus CT Imaging?

- 3 yr old with sudden, bilateral SNHL
 - Mild pre-hearing loss speech delay
 - Could talk on phone prior to loss
 - Passed newborn hearing screen (OAEs)
 - Normal pregnancy, full-term, no hyperbilirubinemia, hypoxia, antibiotics, etc.
 - No family history
 - Normal exam
 - No response to steroids X 21 days
 - MRI \(\rightarrow \) ”Normal” (2003)
 - ABR
 - Responses right
 - No Response left
CT versus MRI in Cochlear Implants

16 months of implant experience
Chance responses on closed set test
No eABR or eCAP
Asked to see patient for “Auditory Neuropathy”
MRI and ABR From Prior to Implant
Left Cochlear Implantation

- Left Nucleus Freedom→uncomplicated
- Normal NRT in OR and thereafter
- At 9 weeks
 » ESP Standard Monosyllables→75%
- At 6 months
 » ESP Standard Monosyllables→100%
 » MLNT Hard→73%
- 3 yrs
 » PBK words->100%
- Talks on the phone!!

MRI is better than CT in choosing CI candidates!
Bilateral Cochlear Implantation
Bilateral Cochlear Implants

• Advantages
 » Always implant better ear
 » Hearing in quiet
 » Hearing in noise
 » Never off the air

• Disadvantages
 » Two surgeries
 » 1 or 2 anesthesias
 » Loss of acoustic hearing
 • Bath tub hearing
 • CI limited frequency spectrum
 » Future therapies
 » Vestibular effects
 » Double programming
 » Economics
Are all children second side candidates?
What do we try to do

Repeat Screen

Screening progress?

ABR, ASSR, OAE
Hearing Aid fitting

Behavioral testing
AV therapy progress?

Medical Evaluation
Genetics considered
Early Intervention Services
Beginnings

Consider CI Evaluation

Cochlear Implantation
AV therapy

Birth 1 2-4 mo 6-9 10-14 mo
What about ANSD?

- Repeat Screen
- Screening progress?
- ABR, ASSR, OAE
- Hearing Aid fitting
- Medical Evaluation
- Genetics considered
- Early Intervention Services
- Beginnings
- Behavioral testing
- AV therapy progress?
- Cochlear Implantation
- AV therapy
- Consider CI Eval
- Hearing aid fitting

Timeline:
- Birth
- 1
- 2-4 mo
- 6-9
- 10-14 mo
Factors that Delay implantation

• Auditory
 » Delay in diagnosis
 » Significant residual hearing
 » Fluctuating hearing
 » Unreliable or conflicting test results
 » ANSD
 » Underfit amplification

• Speech development
 » Good progress despite profound HL

• Parental issues
 » Missed appointments
 » Don’t wear devices
 » No educational buy-in
 » Socioeconomic

• Medical
 » Anatomic uncertainty
 • CN deficiency
 • Severe inner ear malformation
 » Multiple Challenges
 • Cerebral palsy
 • Autism
 • Other
ELECTROACOUSTIC STIMULATION
ELECTROACOUSTIC STIMULATION (EAS)

CAUTION: Investigational device. Limited by US law to investigational use.
US EAS Clinical Trial

» Arm 1
 • Adults 18-70 yrs
 • Pure tones within criteria
 • <20 dB asymmetry
 • ABG<10 dB
 • Best-aided CNC word<50%
 • Normal ME function
 • No vestibular or retrocochlear pathology
 • Hearing aids >3 mo

» Arm 2
 • Same except new pure tone criteria
 • CNC 51-60%

CAUTION: Investigational device. Limited by US law to investigational use.
CNC Word Scores for 11 EAS Subjects*

*Contralateral HA not added yet

CAUTION: Investigational device. Limited by US law to investigational use.
CUNY in Noise (SNR+0) for 11 EAS Subjects*

CAUTION: Investigational device. Limited by US law to investigational use.
Electroacoustic Stimulation

• Hearing Preservation
 » Possible in adults
 » Requires special devices and special surgery
 » Children maybe different than adults

• When reliable, this *may* change the paradigm for all children with hearing loss.
Cochlear Implants and Meningitis

- Pneumococcal Vaccinations recommended for all patients
 - PCV 7 (Prevnar-7)
 - Polysaccharide vaccine (PCV-23)
 - PCV-13 (Prevnar-13)

- Visit the CDC Website for details
- AAO-HNS Implantable Hearing Devices Subcommittee

Pediatrics 2010;126:381-91
Hair Cell Stimulation

• Preserved speech perception ability

• Problems with hearing aids
 » Requires an ear canal
 » Occlusion effects
 » Distortion
 » Feedback
 » Discomfort
 » Stigma of wearing a hearing aid
Osseointegrated Implant

- **Bone Conduction**
 - Ipsilateral stimulation
 - Conductive HL
 - Mixed HL
 - Contralateral stimulation
 - CROS

- **Surgically simple**
 - Requires 3-4 mm bone
 - ~2-3 months of healing

- **Percutaneous connection**
 - Site tolerance issues
 - Aesthetic issues

- **Not ear specific**

Two Manufacturers
- Cochlear Corp → BAHA®
- Oticon Corp → Ponto®
Osseointegrated Implant

Conductive or Mixed Loss

Single-Sided Deafness
BAHA® Osseointegrated Implant in Children

- Requires 3-4 mm of bone (>5 yrs)
- Permanent Conductive or Mixed hearing loss
 » Ossicular disorders
 » X-linked stapes gusher syndrome
 » Atresia
- Headband Option
 » Transition to Implant
- Pediatric Research
 » Single-sided deafness (SSD)
 • Don’t control environment
 • No compelling data
 » Bilateral BAHA
 • No compelling data
Active Middle Ear Implants

- Direct Ossicular Chain or Cochlear Fluid Drivers
 - Occlusion effects
 - Distortion
 - Feedback
 - Discomfort
 - Stigma of wearing a hearing aid
Active Middle Ear Implants*

- **Partially implantable**
 - Vibrant® Med-EL
 - Otologics MET®
 - Ototonix Maxum®

- **Totally implantable**
 - Envoy Esteem®
 - Otologics MET®

Transducer type
- Electromagnetic*
- Electromagnetic
- Electromagnetic
- Piezoelectric*

*FDA Approved for SNHL only
*Not approved for children
Vibrant® MED EL

- First FDA-approved Active MEI
 - Semi-Implantable
 - SNHL indication
 - Symphonix® device
- Adults 18+ yrs
 - Word recognition >50%
 - Normal ME function
 - Realistic expectations
Vibrant® MED EL

- **Components**
 - External audio processor
 - Held in place with a permanent magnet
 - battery
 - Implanted receiver
 - FMT “floating mass transducer”
 - (permanent magnet suspended in a titanium can wrapped with gold wire)
Vibrant® MED EL Surgery

Mastoidectomy and facial recess approach

Magnet placed against the incudo stapedial joint for the SNHL application
Better Subjective Sound Quality

Overall Sound Quality
- Vibrant Soundbridge: 89%
- Hearing Aid: 18%

Clearness of Sound Tone
- Vibrant Soundbridge: 86%
- Hearing Aid: 31%

Naturalness of Speech
- Vibrant Soundbridge: 90%
- Hearing Aid: 27%
Active Middle Ear Implants

• VERY compelling for patients with:
 » Atresia
 » Cholesteatoma
 » Severe tympanic membrane problems
 » Mastoid cavity
 » Feedback issues

• Anatomic issues frequently include:
 » Absent ossicles
 » Fixed stapes
 » Facial nerve dehiscence
 » Mastoid cavity
 » Collapsed middle ear space
Concept of Round Window Stimulation

• Rationale
 » Retrograde vibration of inner ear fluids
 » Oval window not available
 • Previous stapes or ossicular surgery
 • Overhanging facial nerve
 • Obliteration
Preop Air Conduction Thresholds in Soundfield with Masking

frequency (Hz)

threshold (dB)
Preop Air-Bone Gap

- Frequency (Hz): 250, 500, 750, 1000, 1500, 2000, 3000, 4000
- Threshold (dB): 0 to 100

- Subject 1
- Subject 2
- Subject 3
- Subject 4
Mean Aided Thresholds in Soundfield

Frequency (Hz)

Mean threshold (dB HL)

- Pre-Op
- Initial Activation
- 1 Month
- 3 Month
- 6 Month

[Graph showing mean aided thresholds across different frequencies for various time points.]
CNC Word Scores at 70 dB SPL

percent correct (%)

Preop 1 mo 3 mo 6 mo

Subject 1
Subject 2
Subject 3
Subject 4
Implantable Devices

• Cochlear Implants
 » Currently Sacrifices Residual Hearing
 » Earlier is Better
 » Complex Multidisciplinary Evaluation
 » Reliable hearing preservation will change things dramatically
 • Better hearing outcomes
 • More candidates

• Middle ear stimulation
 » Osseointegrated implants
 • Effective and simple
 • Requires percutaneous connection and thick bone
 » Active middle ear implants
 • Might change paradigm for CHL and MHL