It’s not just what you hear, but what you can do with what you hear – linking auditory and cognitive processing

Kathy Pichora-Fuller

University of Toronto, Canada
Toronto Rehabilitation Institute
Linköping University, Sweden
Speech Understanding in Noise

- Little problem in ideal listening conditions
 - Quiet
 - One talker
 - Familiar person, topic, situation
 - Simple task, focused activity

- Difficulty in challenging listening conditions
 - Noise – but it is more than just masking…….
 - Multiple talkers
 - Strangers, accents, new topic, novel situation
 - Complex task, many concurrent activities
 - Fast pace
 - Stress/emotion
 - Hearing aid/cochlear implant
Auditory-Cognitive Interactions

<table>
<thead>
<tr>
<th>IDEAL</th>
<th>CHALLENGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listener</td>
<td>Listener</td>
</tr>
<tr>
<td>- Younger</td>
<td>vs. older adults</td>
</tr>
<tr>
<td>- Normal</td>
<td>vs. impaired hearing</td>
</tr>
<tr>
<td>Signal</td>
<td>Signal</td>
</tr>
<tr>
<td>- Intact</td>
<td>vs. distortions/maskers/HA/CI</td>
</tr>
<tr>
<td>Task</td>
<td>Task</td>
</tr>
<tr>
<td>- Repeat</td>
<td>vs. comprehend/compute/judge/recall</td>
</tr>
<tr>
<td>Context</td>
<td>Context</td>
</tr>
<tr>
<td>- Neutral</td>
<td>vs. semantic/spatial/emotional</td>
</tr>
<tr>
<td>- Acoustic</td>
<td>vs. linguistic/physical/social</td>
</tr>
</tbody>
</table>
Auditory Aging

- HF audiometric threshold elevation
 - OHC (also noise-induced hearing loss)
 - Endocochlear potentials ~ stria vascularis (Mills et al., 2006)
- Neural – loss of synchrony >>> temporal processing
Temporal Processing and Speech

- Syllabic patterns
 - prosody (speech rate, rhythm)
- Onsets/offsets or gaps/durations
 - phonemic contrasts (apple – al)
- Synchrony/periodicity cues
 - fundamental frequency & harmonic structure (voice pitch, quality)
Speech Perception in Noise
(Pichora-Fuller, Schneider, Daneman, JASA, 1995)

- 8 lists of 50 sentences
 - Half low-context
 - John did not talk about the *spoon*.
 - Half high-context
 - Stir your coffee with a *spoon*.
- Repeat last word of sentence
- Vary S:N
- (Sometimes also recall)
- Old need 3 dB better S:N
- Context helps
Older “normal” hearing for age with clinically normal audiograms up to 4 kHz (N = 48; average age ~ 70 years)
SSQ and Behavioural Hearing Tests: Not Significantly Correlated

Pure-tone Average (dB HL)

Words-in-Noise (WIN) 50% threshold (dB SNR)
SSQ Items with Largest Age-related Differences

- **Speech**
 - Conversing in adverse environment
 - Conversation in echoic environment: 1.7
 - Talking with a person in continuous noise: 1.6
 - Focusing, switching attention
 - Ignore interfering voice of different pitch: 1.9
 - Following conversation switching in a group: 1.6

Young - Old score (10-point scale)
Bottom-Up & Top Down Processing

- Effortful listening
 - Bottom-up processing less efficient
 - Top-down processing more necessary

- Bottom-up (ear to brain)
 - Analysis of acoustic signal
 - Better signal (faster)
 - Poorer signal (slower)
 - @ amount & type of distortion

- Top-down (brain to ear)
 - Priming (pre-signal)
 - expectations facilitate recognition (faster)
 - Disambiguation (post-signal)
 - knowledge constrains alternatives (slower)
 - Repair (post-signal)
 - Fill in gaps or correct errors (slower)
What Changes in Cognitive Development over the Lifespan?
(Craik & Bialystock, Handbook of Cognitive Aging, 2008)

Younger \[\rightarrow\] Older

Control
(PROCESSING)

Representation
(KNOWLEDGE)

Context
(reliance, benefit from SUPPORTIVE ENVIRONMENT)

losses \[\rightarrow\] gains
Auditory-Cognitive Interactions during Processing in Challenging Conditions (with HAs and CIs)

WORKING MEMORY

ATTENTIONAL CONTROL

SPEED OF INFORMATION PROCESSING

HA Benefit Correlated with Cognition

- Landmark 2003 studies (Gatehouse et al.; Humes; Lunner)
 - Those with higher cognitive function
 - do better with complex, fast-acting signal processing
 - Those with lower cognitive function
 - do less well with such complex devices
 - Cognition matters in challenging conditions

- Why?

- How measure cognitive status?
 - To predict or guide treatment (HA fitting, training)
 - As a new outcome measure
Cognitive Benefits of Better Hearing
Arlinger, Lunner, Lyxell, & Pichora-Fuller, SJP, 2009

- Older adults using hearing aids have better emotional and social well-being and greater longevity
 (Appolonio et al., 1996; Cacciatore et al., 1999; Naramura et al., 1999; Seniors Research Group, 1999)

- Reduced rate of decline in scores on a cognitive screening test over a six-month period following intervention with hearing aids
 (Allen et al., 2003)

- Slower cognitive decline in Alzheimer’s cases with better hearing
 (Peters, Potter, & Scholer, 1988; Wahl & Heyl, 2003)

- Hearing aid use reduced problem behaviours judged by caregivers of adults with dementia
 (Palmer et al., 1998)
Working memory

- System responsible for the **PROCESSING** and temporary **STORAGE** of information
 - during the performance of all complex cognitive tasks, including comprehension
 - assumed to have a **limited capacity that must be shared between processing and storage**

(Baddeley, 1976)
Measuring Working Memory: Why and How….

Fred

Mary

Fred in Quiet

Fred in Noise

Fred in More Noise

Adapted from Pichora-Fuller, 2006
Cognitive Losses with Age

- Processing is less efficient
 - Working memory
 - Slowing
 - Attention/Inhibition

- Possible cognitive consequences if sensory (or motor) abilities are reduced with associated increases in processing demands
Are Older Adults Special?

- **Audibility** (audiogram) is primary but not a special aging factor (Humes, 2003, JAAA 2007)

If audibility factor is minimized

- **Age-related auditory temporal processing** issues emerge
 - Especially in challenging listening conditions
 - Complex speech (e.g., sentences)
 - Complex backgrounds (e.g., competing talkers)

- Critical age differences when conditions become challenging
 - Older listeners need **2-3 dB better S:N** than younger listeners

- **Cognitive factors important in challenging conditions!!!**
 - Regardless of age
 - Regardless of audiogram

- **BUT THERE IS NO NOISE REDUCTION IN DAILY LIFE!!!!**
Cognitive Aging

- **Gains:**
 - Knowledge is preserved
 - Context is helpful

- **Losses:**
 - Processing
 - Working memory
 - Slowing
 - Attention/Inhibition
Cognitive Neuroscience of Aging

- Same performance achieved with different processing
- More widespread activation ~ brain reorganization
 - Young brain activity more lateralized
 - Old brain activity more distributed
- Deterioration or compensation?
- **HAROLD**: Hemispheric asymmetry reduction in older adults (Cabeza, 2002)
- **PASA**: Posterior-anterior shift in aging (Davis, Dennis, Daselaar, Fleck & Cabeza, 2008)
Context, Intelligibility & Brain Activation
(Obleser, Wise, Dresner & Scott, 2006)

High vs. low predictability at intermediate signal quality for younger adults listening to distorted (noise-vocoded) SPIN sentences

Activation to **HIGH-CONTEXT > LOW-CONTEXT** speech

Various areas activated including the **left dorsolateral prefrontal cortex** (working memory & semantic processing)
Compensation
(Grady, 2012, *Nature Reviews Neuroscience*, 13, 491-505)
Cognitive Hypotheses & Training

- **Cognitive Compensation Hypothesis**
 (Li, Krampe, & Bondar, 2005; Li & Lindenberger, 2002)
 - declining sensory (and motor) functions are compensated by higher-level cognitive and attentional processes

- **CRUNCH - Compensation-Related Utilization of Neural Circuits Hypothesis**
 (Reuter-Lorenz & Cappell, 2008)
 - additional brain regions are recruited by older adults when capacity limits are reached in a given task or combined tasks.

- **STAC - Scaffolding Theory of Aging and Cognition**
 (Park & Reuter-Lorenz, 2009)
 - there is the potential to enhance such compensation by training.
New Rehab Issues

Ease of Listening

1. **Speed and semantic priming**
2. Spatial expectation
3. Emotional consistency
4. Talker continuity
Lexical decision reaction time in younger and older listeners: The effects of semantic context and the type and amount of acoustical distortion.

- Preceding context distorted or intact
 - Congruent: Stir your coffee with a spoon.
 - Neutral: Its name is feast.
 - Incongruent: Stir your coffee with a risk.

- Measure RT when lexical decision correct
- Facilitation (RT neutral context – RT congruent context)

Increasing Distortion of Context Only Slows Lexical Decision for Intact Items
• Older listeners’ RTs are more facilitated by context.
• Signal distortion reduces facilitation.
Speed (and Ease) of Listening

- Signal quality affects listening:
 - Faster if signal is intact
 - Slower if signal is distorted or degraded or noisy
 - *Could be influenced by hearing aid processing*

- Context affects listening:
 - Faster if context is semantically congruent
 - Slower if context is semantically incongruent
 - *Could be influenced by AR training*
New Rehab Issues

Ease of Listening

1. Speed and semantic priming
2. Spatial expectation
3. Emotional consistency
4. Talker continuity
Spatial Attention

- Callsigns = Charlie, Hopper, Baron, etc.
- Probability of target at the centre location (1.0, 0.8, 0.6, 0.33)
- Simple vs Complex instruction

Task: Identify colour and number with target callsign

- **Ready Charlie,** go to blue 1 now
- **Ready Hopper,** go to white 2 now
- **Ready Baron,** go to green 8 now

Ready **Baron**, go to [colour] [number] now.
Task Complexity Hurts Older Adults if Target at Unlikely Location

Singh, Pichora-Fuller, Schneider, JASA 2008; revision submitted, Ear & Hearing
New Rehab Issues

Ease of Listening

1. Speed and semantic priming
2. Spatial expectation
3. Emotional consistency
4. Talker continuity
Emotion and Word Recognition
(Dupuis & Pichora-Fuller, in prep; Dupuis PhD; files on T-space)
Mixed vs. Blocked; Y > O ~ 11% vs. 6%
New Rehab Issues

Ease of Listening

1. Speed and semantic priming
2. Spatial expectation
3. Emotional consistency
4. Talker continuity
Circles with solid lines: intact two-talker speech masker condition.
Circles with the dashed line: time-reversed two-talker speech masker.
Triangles with solid lines: 3-band speech masker condition.
Triangles with the dashed line: 16-band speech masker condition.
Diamonds: precedence-effect speech masker condition.
Listening in Noise ~
Driving Uphill in Snow

- Low gear (effort)
- Slow down (speed)
- Keep moving (continuity)
- Stay calm (emotion)

- Expertise (training)
- Snow tires (technology)

- Get where you want to go
- Stay safe