“Biological Bases of Age-Related Hearing Loss”

Robert D. Frisina, PhD
Professor and Assoc. Chair

Otolaryngology Department
University of Rochester Medical School,
International Center for Hearing & Speech Research
National Technical Institute for the Deaf
Morning Session: Presbycusis – What Goes Wrong in the Ear and Brain?

- Why don’t hearing aids work with many aged listeners?
- Is it all about hair cell loss? – No, but…
- Timing is everything! –
- Feedback loop from the brain to the ear declines, starting in middle age
- Promising bioengineering avenues for prevention and therapeutics!
Gene Expression Experiment: The Central Theme

- The arrows represent the transfer or flow of information.
- DNA and RNA store information in a base-4 code (the four nucleotides).
- Proteins store information in a base-20 code (the 20 amino acids).
Experimental Design For GeneChip Study

- **Hypothesis:** Gene expression changes in the ear and the brain occur in presbycusis

- **Animal Model:** CBA Mice – slow progressive hearing loss

- **Tissue:** Cochlear and inferior colliculus (auditory midbrain) RNA samples from individual mice on *individual microarrays*

- **Investigative Tool:** Affymetrix GeneChip, one chip analyzes 22,600 gene probes for each sample, from each mouse

- **Project Strengths:** Number of replicates, N=80, strengthened the statistical analysis. One chip-one mouse allows exploration of the biological phenotype variance from mouse to mouse.
<table>
<thead>
<tr>
<th>Groups of Mice</th>
<th>No. of Mice</th>
<th>No. of Chips, 1 chip/mouse</th>
<th>Age - Months</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young Control</td>
<td>9</td>
<td>9</td>
<td>3.5 ± 0.4</td>
<td>Male=5 Female=4</td>
</tr>
<tr>
<td>Middle aged Good Hearing</td>
<td>17</td>
<td>17</td>
<td>12.3 ± 1.5</td>
<td>Male=8 Female=9</td>
</tr>
<tr>
<td>Old - Mild Presbycusis</td>
<td>9</td>
<td>9</td>
<td>27.7 ± 3.4</td>
<td>Male=4 Female=5</td>
</tr>
<tr>
<td>Old - Severe Presbycusis</td>
<td>6</td>
<td>6</td>
<td>30.6 ± 1.9</td>
<td>Male=2 Female=4</td>
</tr>
</tbody>
</table>
Auditory Brainstem Response (ABR) recordings for the CBA mice in the microarray experiments.

- Young adult and middle aged mice show good hearing
- Whereas the auditory sensitivity declined in old age.
- Note that the largest change was from the middle aged to the old presbycusis groups.
Functional Anatomy and Ion Channel Exchange in the Mammalian Inner Ear – Cochlear Tissue

For Gene Arrays
- Organ of Corti
- Lateral Wall
Gene Microarray Findings

GABA – Important Inhibitory Neurotransmitter of the Efferent Feedback System from the Central Auditory System to the Cochlea:

Key Cochlear GABA Receptor Declines with Age – Starting in Middle age, like the Efferent System

From: D’Souza et al., J. Neuroscience Methods, 2008
Cochlear Apoptotic Pathways Show Up-Regulation with Age and Hearing loss

Apoptosis – Programmed Cell Death

Atf3 - activating transcription factor3

Bcl2 - B-cell leukemia/lymphoma2

Bcl2l1 - Bcl2-like1

Casp4 - caspase4 apoptosis-related cysteine protease 4

From: Tadros et al., *Apoptosis*, 2008
Summary of Central Auditory System Changes with Age

Perception of speech and complex sounds in cortical centers

Brainstem Auditory System

Peripherally - Induced central changes

Peripheral Auditory System

Central Impairment

Insult-Age

Peripheral Hearing Loss

From: Frisina et al., *Functional Neurobiology of Aging*, 2001
Glutamate – The Primary Excitatory Neurotransmitter of the Auditory System

Pycs plays a role in converting glutamate to proline
- Its deficiency in old age may lead to:
 - Glutamate increases and proline deficiencies in the auditory midbrain
 - Playing a role in the subsequent inducement of glutamate toxicity and loss of proline neuroprotective effects

Slc1a3 is a glutamate transporter
- Gene expression changes with age and hearing loss may reflect a cellular compensatory mechanism to protect against age-related glutamate or calcium excitotoxicity

From: Tadros et al., *Brain Research*, 2007
Upregulation of Serotonin Receptors with Age and Hearing Loss in the Inferior Colliculus – Auditory Midbrain

Gene Expression

Protein Expression

From: Tadros et al., *Neurobiology of Aging*, 2007
Upregulation of Serotonin Receptors with Age and Hearing Loss in the Inferior Colliculus – Auditory Midbrain

- Could help compensate for declines in Serotonin with age

- Could result in age-related Ca++ toxicity by increasing the intracellular concentration of IP3

- Compensatory up-regulation of calretinin

From: Tadros et al., Neurobiology of Aging, 2007

From: Zettel et al., Hearing Res. 2001
Genetically Cross the CBA and C57 Mouse Strains:
Discovered a new mouse model for aged human listeners who have audiograms within the normal hearing range: mice with “Golden Ears”

From: Frisina et al., Neurobiology of Aging, On Line
Genetically Cross the CBA and C57 Mouse Strains: Discovered a new mouse model for aged human listeners who have audiograms within the normal hearing range: mice with “Golden Ears”

From: Frisina et al., *Neurobiology of Aging*, On Line
Work Supported by NIH:
National Institute on Aging,
Sensory and Motor Disorders of Aging,
Behavioral & Systems Neuroscience Branch,
Division of Neuroscience
National Institute on Deafness &
Communication Disorders
Rochester Hearing/Deafness Research Group

Otolaryngology - U. Rochester
- Dr. Kathy Barsz – Neurophysiol.
- Dr. Owen Brimijoin - Physiology
- Dr. Mary D'Souza – Molecular Biology, Gene Microarrays
- Susan Frisina, RN – Med. Genetics
- Dr. Robert Frisina - Neuroscience
- Dr. Patricia Guimaraes – Hormonal Effects on Audition
- Dr. U-Cheng Leong - Physiology
- Dr. Olga Vasilyeva – Pharmacol.
- Dr. Joseph Walton – Auditory Neurophysiology
- Martha Zettel, MS – Immunocytochemistry
- Dr. Xiaoxia Zhu – Emissions, ABRs, Micro-Surgery

University of Rochester
- Dr. Paul Allen - Behavior, Neurophysiology
- John Housel - Animal Core
- Dr. James Ison - Animal Behavior
- Dr. William O’Neill – ABRs, Auditory Neuroscience

Rochester Institute Technology
- Dr. Robert Frisina, Sr. – Speech Perception, PET, Audiology
- Dr. David Borkholder – Micro-Systems Bioengineering
- Dr. David Eddins - Psychoacoustics
- Fray Mapes, MA – Res. Audiology
- Dr. Dina Newman – Genetics