Longitudinal Changes in Hearing and Speech Perception in Older Adults

Judy R. Dubno
Department of Otolaryngology-Head and Neck Surgery
Medical University of South Carolina
Charleston, SC

Work supported by the National Institutes of Health
Program on Age-Related Hearing Loss

- Established as NIH Program Project Grant in 1987 to evaluate age-related changes in auditory function in humans and a gerbil animal model
- NIH/NIDCD Clinical Research Center now focused exclusively on hearing in older humans
Outline

• Briefly review results from gerbil animal model of age-related hearing loss
• Human subject database (21+ years)
• Cross-sectional and longitudinal changes in hearing in older adults
• Longitudinal changes in speech recognition in older adults, independent of changes in hearing
Gerbil animal model of presbyacusis

- Only scattered hair cell loss (sensory presbyacusis)
- Primary degeneration of spiral ganglion neurons (neural presbyacusis)
- Systematic degeneration of cochlear lateral wall (stria vascularis, spiral ligament)
 - Metabolic presbyacusis
 - Lateral wall responsible for production and maintenance of endocochlear potential (EP)
CAP Thresholds

RS192
1mg/ml, 28D

- **RE w/ pump**
- **LE Control**

EP=28mV
30mV
18mV
64mV
84mV
96mV

Frequency in kHz
SPL in dB

Hearing Loss of Furosemide-Treated Gerbils

Gerbil animal model of presbyacusis

- Decline in endocochlear potential (EP)
 - Reduces voltage available to cochlear amplifier
 - Reduces cochlear amplifier gain
 - Low frequencies: as much as 20 dB
 - High frequencies: as much as 60 dB
 - EP declines result in the characteristic audiogram of older gerbils (metabolic presbyacusis)
- Is this the case for older humans?
Human Subject Database

- **Inclusion and Exclusion Criteria**
 - 60 years or older (now 18 or older)
 - Hearing ability to provide measurable results
 - In good general health
 - Screened with Mini-Mental State Exam (MMSE)
 - No evidence of conductive hearing loss
 - No evidence of active otologic disease
Human Subject Protocol

• Audiometric Measures
 • Hearing for pure tones, including extended high frequencies
 • Ability to understand speech in quiet and in noise
 • Otoacoustic emissions
 • Upward and downward spread of masking
 • Middle ear function
 • Auditory brainstem responses
Human Subject Protocol

- Cognitive Measures
 - Attention
 - Working memory
 - Processing speed
 - Perceived workload

- Brain imaging while listening to and understanding:
 - Low-pass filtered speech
 - Speech in background noise
Human Subject Protocol

- Questionnaires
 - Medical history
 - Prescription and over-the-counter drugs
 - Noise history
 - Hearing aid history
 - Hearing handicap (HHIE)
 - Tinnitus
 - Smoking
 - Handedness
 - Family pedigree for hearing loss

- Otologic examination
Human Subject Protocol

- **Blood measures**
 - Clinical chemistries
 - Lipid profile
 - Hematology panel
 - Hormones (Estradiol, Progesterone – Female subjects)
 - C-reactive protein
 - Electrolyte panel - Discontinued
 - Immunoglobulin panel - Discontinued
 - Thyroid function – Discontinued
 - DNA extracted
 - To identify and characterize genes that are under- or over-expressed with age
Human Database Participants

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Total with any data</th>
<th>Total with longitudinal data</th>
<th>Currently Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-59</td>
<td>161</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>60-98</td>
<td>868</td>
<td>435</td>
<td>326</td>
</tr>
<tr>
<td>Total</td>
<td>1,029</td>
<td>457</td>
<td>355</td>
</tr>
</tbody>
</table>

- Female: 85 (18-59), 483 (60-98), 10 (18-59), 235 (60-95), 14 (18-59), 201 (60-93)
- Male: 76 (18-59), 385 (60-98), 12 (18-59), 200 (60-95), 15 (18-59), 125 (60-93)

- Measures are made yearly or every 2-3 years
Human Database Participants

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Total with any data</th>
<th>Total with longitudinal data</th>
<th>Currently Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Range</td>
<td>18-59 60-98</td>
<td>18-59 60-95</td>
<td>18-59 60-93</td>
</tr>
<tr>
<td>Female</td>
<td>85 483</td>
<td>10 235</td>
<td>14 201</td>
</tr>
<tr>
<td>Male</td>
<td>76 385</td>
<td>12 200</td>
<td>15 125</td>
</tr>
<tr>
<td>Total</td>
<td>161 868</td>
<td>22 435</td>
<td>29 326</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1,029</td>
<td>457</td>
<td>355</td>
</tr>
</tbody>
</table>

- Measures are made yearly or every 2-3 years
Human Database Participants

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Total with any data</th>
<th>Total with longitudinal data</th>
<th>Currently Active</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-59</td>
<td>18-59</td>
<td>18-59</td>
</tr>
<tr>
<td></td>
<td>60-98</td>
<td>60-95</td>
<td>60-93</td>
</tr>
<tr>
<td>Female</td>
<td>85</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>483</td>
<td>235</td>
<td>201</td>
</tr>
<tr>
<td>Male</td>
<td>76</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>200</td>
<td>125</td>
</tr>
<tr>
<td>Total</td>
<td>161</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>868</td>
<td>435</td>
<td>326</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1,029</td>
<td>457</td>
<td>355</td>
</tr>
</tbody>
</table>

- Measures are made yearly or every 2-3 years
Longitudinal Study Design

- Advantages
 - Participants act as their own controls
 - Minimizes effects of uncontrollable factors
 - noise history
 - occupation
 - nutrition
 - Pre-existing health conditions
 - Measures age-related changes for groups and individuals (cross-sectional designs – groups only)
Longitudinal Study Design

- Disadvantages
 - Data collection takes many years
 - Must retain participants for long periods of time
 - Recruitment more difficult
 - Selective attrition
 - For longitudinal studies of aging
 - Healthier or higher performing participants may remain in the study longer
 - High cost
Longitudinal Changes in Thresholds

- Serial audiograms obtained over ≥3 years
 - 3,690 audiograms from 376 ears
 - Mean number of audiograms per subject: 9.8 (Range 2-21)
 - Mean time span: 6.4 years (Range 3-12)
 - Mean age at entry: 68.1 years (Range 60-81)
 - Mean current age: 74.5 years (Range 64-89)
Longitudinal Changes in Speech Recognition

- SRT
- Word recognition in quiet (NU-6)
- Maximum word recognition (NU-6)
- Recognition of sentences in noise (Speech Perception in Noise Test, SPIN)
- Binaural word recognition (SSW)
Rationale

• To assess age-related declines in word recognition
 • Using AI (weighted average speech audibility), predict word recognition scores for each subject for each time point
 • Compare measured and predicted scores for each time point
AI = 0.14
Predicted score = 14%

AI = 0.46
Predicted score = 78%
Rationale

- To assess age-related declines in word recognition
 - If declines in word recognition over time are similar to predicted declines, poorer hearing (reduced audible speech) accounts for these changes, rather than increasing age
 - If declines are faster than predicted, poorer hearing does not entirely account for declines in word recognition – the remainder may be attributed to other factors, such as increasing age
Word Recognition in Quiet

• Serial measures obtained over ≥3 years
• Each subject had a minimum of 3 NU-6 scores
 • 3,704 scores from 512 ears
 • Mean number of scores per subject: 7.2 (Range 3-18)
 • Mean time span: 7.3 years (Range 3-15)
 • Mean age at entry: 67.6 years (Range 50-82)
 • Mean current age: 75.0 years (Range 60-91)
Word Recognition (%)

Mean Age (Years)

3704 scores from 512 ears

Observed
Word Recognition (%) vs Mean Age (Years)

- Predicted
- Observed

3704 scores from 512 ears
Effect of Initial Hearing Loss

- More severe injury to the auditory system resulted in faster declines in word recognition as subjects aged
- Not related simply to more-elevated thresholds
Effect of Serum Progesterone

- Consistent with the negative effect of hormone therapy that includes progestin reported by Guimaraes et al. (PNAS 2006)
- Consistent with a biochemical mechanism that relates progesterone to activation of inhibitory neurotransmitters, such as GABA, in the aging auditory system
Summary and Conclusions

- Pure-tone thresholds increase with age by an average of 1 dB/year (10 dB/decade)
- Rate of decline in high-frequency hearing increases for females but decreases for males
- Word recognition in quiet declines with age, even after accounting for reductions in audible speech due to poorer hearing
Summary and Conclusions

• Rate of decline is faster for individuals with more severe hearing loss
• Rate of decline is faster for females with higher levels of progesterone in their blood
Summary and Conclusions

- Audiogram shapes and longitudinal changes in hearing are consistent with the view of age-related hearing loss as a **metabolic**, **vascular**, **neural** disorder rather than a sensory disorder.
Acknowledgements

Fu-Shing Lee
Lois J. Matthews
Elizabeth A. Poth
Christine C. Strange
Dawn Konrad-Martin
Tracy Fitzgerald
Sarah Hargus
Johanna Larsen
Greg Genna
Carrie Veneman

Jayne B. Ahlstrom
Mark A. Eckert
Kelly C. Harris
Amy R. Horwitz
Hainan Lang
John H. Mills
Richard A. Schmiedt
Bradley A. Schulte

Supported by
NIH NIDCD
P50 DC00422
Cognitive Test Battery

- Connections Test (Salthouse)
- Visual Search and Attention Task (VSAT)
- Stroop Neuropsychological Screening Test
- Abbreviated Wechsler Memory Scale (WMS-III)
- Wechsler Abbreviated Scale of Attention (WASI)
- Mini-Mental Status Exam (MMSE)
- Edinburgh Handedness Scale
- NASA Task Load Index (Workload)