Pediatric Hearing Instrument Fitting in 2010:

The Sound Foundations Cuper Project

Misconceptions

Tools to uncover the "myth" about horses

MORSE'S Gallery, 417 Montgomery St., San Francisco.

THE MORSE IN MOTION.

AUTOMATIC Introducemental

"SALLIE GARDNER," owned by LELAND STANFORD; running at a 1.40 gait over the Palo Alto track, 19th June, 1878.
The incoding of the standard of

Are there misconceptions about Pediatric HI fittings?

- How many hours do infants and toddlers wear instruments/day? School aged? Teens?
- How often are children provided access to noise solutions?
- How often is DSL applied in pediatric instrument fittings?
- What is the average programming time for pediatric hearing instruments

Sound Foundations Cuper Project: Purpose

To understand pediatric hearing instrument fittings and usage by collecting data from a large number of pediatric hearing instrument fitting files

- Pediatric hearing instrument usage
- Technology selection and activation
- Class and model selection
- Prescriptive method
- Demographics of pediatric hearing instrument users
- Audiologists' workflow
- Pediatric instrument fitting and follow up practices
- Use of fitting tools

Project Scope

- Invited clinical and school pediatric audiologists to participate
- All participating workstations were activated in Jan 2010
- Data logging was uploaded to central server in May and September
- Data analyzed and presented at Sound Foundations
 - 100 workstations
 - 72 clinics
 - 28 schools
 - 8 months of logging
 - 4918 subjects
 - 8669 ears

Cuper Data Collection

Objective Insights into Several Aspects of Fitting and Use

Wearers

Usage

Features

Process

Impact

Outline

Usage

Features

Process

Impact

Average AC hearing loss 56 dB with no gender effect

Instrument users by audiogram type and age

6% conductive or mixed

* 9% mixed or CHL by teens

Hearing loss by degree and age

Distribution of Fittings by Age are we loosing the interest of teens?

Outline

Usage

Features

Process

Impact

HI use/day increases with age children wear their HI on avg. 5.5hr/day

HI Usage Categories: percentiles / usage time

Listening Environment

Outline

Usage

Features

Process

Impact

Technology Class Selected in Pediatric Fittings children fitted with economy 63% of time

No age related differences were seen in class selection

Style Selected

97% of children wear BTEs

Rx's BTE based on potential for growth

Style Selected

little difference with teens, preference for CRT over ITE

Custom products may be an option for older children

Accessible Programs

FM+M, automatic and calm

program name	#install.	in % (HI)
FM + Mic	3235	51.12%
SoundManager	2889	45.65%
Calm Situations	1375	21.73%
TriPilot	1144	18.08%
Speech in Noise	734	11.60%
T-Coil + Mic	299	4.73%
SoundFlow	214	3.38%
T-Coil	190	3.00%
Custom	184	2.91%
Music	151	2.39%
FM	140	2.21%
Comfort in Noise	109	1.72%
Acoustic Telephone	53	0.84%
ZoomControl	3	0.05%

"...benefits and limitations of this technology are unknown"

Accessible Programs

FM ready calm, automatic and calm are most common

program name	#install.	in % (HI)
FM + Mic	3235	51.12%
SoundManager	2889	45.65%
Calm Situations	1375	21.73%
TriPilot	1144	18.08%
Speech in Noise	734	11.60%
T-Coil + Mic	299	4.73%
SoundFlow	214	3.38%
T-Coil	190	3.00%
Custom	184	2.91%
Music	151	2.39%
FM	140	2.21%
Comfort in Noise	109	1.72%
Acoustic Telephone	53	0.84%
ZoomControl	3	0.05%

"it is essential that the audiologist provide phone access even for the youngest HI wearers.."

Feature guidance by AAA

 Multiple channels 	100%
Expansion	100%
Compression	100%
- Frequency compression/transposition (5030/7813 @90%)	60%

"should be considered viable unless data becomes available to exclude"

Start-up program

program name	#install.	in %
FM + Mic	2584	40.83%
SoundManager	2054	32.46%
TriPilot	856	13.53%
Calm Situations	608	9.61%
SoundFlow	161	2.54%
Custom	27	0.43%
Speech in Noise	21	0.33%
FM	6	0.09%

Activation of Program Button

children <9 typically not given multiple program access

Activation of Volume Control

Sound Recover

active in 90% of available time

Outline

Usage

Features

Process

Impact

1980s: DSL Algorithm Development – in the Seewald basement

1990s -

- Almost half of the respondents reported using a "personal fitting strategy" 75-100% of the time
- Greater than 90% of responding audiologists reported that they used the DSL approach 0-24% of the time

2010- Professor Seewald, I think we got the message!

Binaural fit rates

Workflow

no standard pathway through software

Tracking "hot domain transitions (%)

Revealed that there is no typical workflow

search/ try and error

first fitting/follow up fitting

what was the task

Some typical paths

•Start ⇒ Tuning ⇒ End(34%)

•Start ⇒ Initial ⇒ Tuning ⇒ End(19%)

•Start ⇒ Initial ⇒ End(17%)

•Start ⇒ End(9%)

A Sound Foundation Through Early Amplification

Hearing Instrument Programming Time

10-15 mins, follow-up about 2 mins shorter

N=13,466

Outline

Usage

Features

Process

Impact

Objective findings

- Almost 40-50 % of kids use the devices less than 4 h / day
 On average, children wear hearing instruments for 5.5 hours/day
- School-aged children are in background noise for about 30% of their listening hours. Infants are in noise for about 20% of their listening hours
- The DSL formula is applied to 85% of pediatric fittings of specialty centers and schools
- Kids: typically economy class products
- AAA Guidelines fulfilled in general
 - Automatic switching used rather often
- Workflow, usage of fitting tools, fitting process
- Pediatric programming sessions take 10-15 minutes

Value of Cuper

- We don't have an APGARs for predicting performance of pediatric hearing instrument users. We continue to study performance outcomes with the intention of isolating those circumstances and actions which are most likely to product the desired results.
- As we develop a more robust evidence basis for clinical decision making, we first need to understand objectively what the variables in play are.
- Getting Better through a dogged analysis of the details (Gewande, 2007)
- Cuper presents an objective, large scale analysis of the application of technology and usage which can be tied to product improvement, performance outcomes

Acknowledgments

- All participating clinics and schools
- Phonak Pediatric Team- Dave Wessell, Dawn Ruley,
 Megan Quilter, Miranda Weidle, Deborah Edwards,
 Solange Anderson, Shannon Motsett, Dawn Ruley
- Phonak Headquarters Cuper project managers Daniel Meier, Ulrike Lemke

undation Through Early Amplification