Should digital noise reduction be activated in pediatric hearing-aid fittings?

Ryan McCreery, ABD CCC-A
Research Audiologist
Boys Town National Research Hospital
Omaha, Nebraska, USA

Supported by NIDCD -F31-DC010505-01A1 R01-DC004300-11 P30-DC004662-10 T35-DC008757-04

Boys Town National Research Hospital

Objectives

- What is digital noise reduction (DNR)?
- Should DNR be implemented with infants and children?

 If so, how can DNR be verified?

Noise

Digital noise reduction (DNR)

- Hearing aid signal processing strategy designed to limit the negative consequences of background noise
 - Achieved through reduction of gain

Example of DNR

DNR is complex

- Method of DNR varies widely:
 - Device/manufacturer
 - Frequency
 - Activating signal
 - Input level
 - Audiometric thresholds
 - Amount of gain reduction
 - Time constants

DNR Studies with Adults

- Speech recognition is not improved or degraded with DNR
- Adult listeners report:
 - Preference for DNR
 - Improved listening comfort
 - Higher acceptable noise level (ANL)
- See Bentler & Chiou 2006 for review

What about infants and children?

- Children require greater audibility
- Children experience greater degradation of speech understanding in noise
- Comfort and ease of listening are still important

Does DNR reduce gain for speech?

Speech + Steady-state noise (+3 SNR) Same audiogram

BTNRH DNR studies with children

- Stelmachowicz et al. 2010
- Gustafson et al. 2010

Stelmachowicz et al. 2010

- 16 children with hearing loss
 - -5 10 years
- Speech recognition:
 - VCV syllables (/asa/)
 - Monosyllabic words (PBK)
 - Sentences (BKB)
- Speech-shaped noise
- DNR on/off

Results

- On average, no significant improvement or degradation of speech recognition with DNR
 - No interaction for:
 - Nonsense syllables, words or sentences (stimulus)
 - Signal-to-noise ratio

Significant individual variability

Performance was less variable for older children

Sentences > Nonsense > Monosyllables

Some significant individual decreases with DNR – none across all three stimulus types for same subject

Stelmachowicz et al. 2010 Limitations

- One algorithm
- Included only mild to moderate loss
- Some children near ceiling for DNR off condition
 - Sentences
- No quantification of DNR effect

Gustafson et al. 2010

- How does DNR influence:
 - Speech recognition
 - Listening effort
- Normal-hearing children
 - 7 -12 years-old
- Two DNR algorithms
- Results presented as poster at this meeting

Gustafson et al. Methods

- Quantification of DNR
 - Inversion method (Hagerman & Olofssen, 2004)
 - Coherence (Lewis et al. 2009)
- Limit ceiling effects
 - CVC nonword stimuli

Inversion Method

Results from Gustafson et al.

- Speech recognition
 - Improved by DNR algorithm that improved SNR with inversion
 - No change with algorithm that maintained SNR
- Verbal response time
 - Improved for both DNR algorithms

Summary of Pediatric Studies

- DNR does not degrade speech recognition for children ages 5-12
- DNR may improve ease of listening for normal hearing children
 - Not dependent on improving speech recognition

Limitations of current studies

- Results needed for
 - Additional algorithms
 - Greater degrees of loss
 - Younger children
 - Real world environments / outcomes

Should we use DNR with children?

- Emerging evidence for school-age children
- Limited evidence for infants and younger children
- Verification of effects on speech with noise must occur

Verification of DNR

Verifit directional test mode Fixed omnidirectional setting 65 dB input level +3 SNR

Effects with noise only

DNR Off DNR On

Steady-state noise with non-Verifit system

Clinical recommendations

- Evaluate DNR algorithms individually
 - Determine effect on speech + noise
- Select algorithms for children that maintain speech signal
- DNR is not our only (or even best) tool!
 - FM systems
 - Directional microphone
- Counsel families about reducing noise

Acknowledgements

- Hearing and Amplification Research Lab
 - Pat Stelmachowicz
 - Dawna Lewis
 - Judy Kopun
 - Brenda Hoover
 - Jody Spalding
 - Kanae Nishi
- Arizona State University
 - Samantha Gustafson

Supported by NIDCD F31-DC010505-01A1 R01-DC004300-11 P30-DC004662-10 T35-DC008757-04

Questions / Comments?