INFANT HEARING AID ASSESSMENT USING CORTICAL AUDITORY EVOKED POTENTIALS

Kevin J Munro¹ & Suzanne C Purdy²

¹School of Psychological Sciences, University of Manchester
²Psychology Department, University of Auckland

Age HA fitting before & after NHSP

(Wood et al, 2006)
SEQUENTIAL STEPS

1. HEARING SCREEN
 • e.g., using fixed-level ABR
2. ASSESSMENT
 • e.g., freq-specific ABR or ASSR
3. SELECT & FIT AMPLIFICATION
 • based on good-quality & comprehensive data
4. AUDIBILITY OF SPEECH
5. DISCRIMINABILITY OF STIMULI
6. MONITOR & PREDICT OUTCOME

WHY OBLIGATORY CAEPS?

1. Originate at end of auditory chain so assessing more of hearing system (& probably more likely to correlate with performance—see later)
2. Corticals work well on awake babies: large amplitude response & easily detected with relatively little repetition
3. Stimuli (such as speech) can be long duration so hearing aid has time to react to real life sounds

(Dillon, 2005)
THE IDEA IS NOT A NEW ONE

MORPHOLOGY IN ADULT

Fig. 4. Improvement in threshold for the auditory evoked response by the wearing of a hearing aid. All traces obtained on the same day in a 21-month-old girl with rubella sedated with chlorpromazine. Stimuli: 500 Hz. Derivation: left temporo-parietal to mastoid. Analysis time, 2 seconds; prestimulus delay, 0.5 second.

[Source: Fig 4 from Rapin & Graziani (1967)]
MORPHOLOGY IN AWAKE INFANTS

P1 (ca 200 ms)

N1b
N"late"
N350
METHODOLOGY

1. Infant awake on parents lap or in high chair
2. Distracters e.g., toys with lights, mirrors, DVD
3. Snap-on leads so easy to have break e.g. feeding
4. Natural speech stimuli from loudspeaker (m, g, t)
5. 50-100 responses per average
6. Inter-stimulus interval ca 1125 ms
7. Artifact reject at +/- 100 µV
8. Recording window -100 to +500 ms
9. baseline correct, 30 Hz low pass filter

SPEECH STIMULI

![Graph showing relative intensity vs frequency for /m/, /g/, and /t/ sounds]
Infants (n=20; 3.5-7 mths) at Cz

-100 0 100 200 300 400 500
Time (ms)

5µV

/t/
/g/
/m/

500 Hz
2 kHz

N_{late}

NAL HearLAB
(speech stimuli & statistical analysis)
AUTOMATED WAVEFORM DETECTION & DIFFERENTIATION
(Munro et al, Under Revision)

- n=24 adult listeners
- with and without earplugs to simulate HL
- /m/, /g/ & /t/ at 55, 65 & 75 dB SPL
DETECTION OF CAEP
(Automated Hotelling T^2 analysis)

<table>
<thead>
<tr>
<th></th>
<th>/m/</th>
<th>/t/</th>
<th>/g/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 dB SPL</td>
<td>24 (100%)</td>
<td>23 (96%)</td>
<td>23 (96%)</td>
</tr>
<tr>
<td>65 dB SPL</td>
<td>24 (100%)</td>
<td>23 (96%)</td>
<td>24 (100%)</td>
</tr>
<tr>
<td>55 dB SPL</td>
<td>23 (96%)</td>
<td>23 (96%)</td>
<td>23 (96%)</td>
</tr>
<tr>
<td>Simulated conductive impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 dB SPL</td>
<td>24 (100%)</td>
<td>24 (100%)</td>
<td>24 (100%)</td>
</tr>
<tr>
<td>65 dB SPL</td>
<td>21 (88%)</td>
<td>21 (88%)</td>
<td>23 (96%)</td>
</tr>
<tr>
<td>55 dB SPL</td>
<td>16 (67%)</td>
<td>12 (50%)</td>
<td>18 (75%)</td>
</tr>
</tbody>
</table>

DIFFERENTIATION OF CAEP
(Automated MANOVA analysis)

<table>
<thead>
<tr>
<th></th>
<th>/m/ v /t/</th>
<th>/m/ v /g/</th>
<th>/t/ v /g/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 dB SPL</td>
<td>18/23 (79%)</td>
<td>14/23 (61%)</td>
<td>3/22 (14%)</td>
</tr>
<tr>
<td>65 dB SPL</td>
<td>18/23 (79%)</td>
<td>14/24 (58%)</td>
<td>3/23 (14%)</td>
</tr>
<tr>
<td>55 dB SPL</td>
<td>16/23 (69%)</td>
<td>15/23 (65%)</td>
<td>5/23 (22%)</td>
</tr>
<tr>
<td>Simulated conductive impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 dB SPL</td>
<td>8/24 (33%)</td>
<td>13/24 (54%)</td>
<td>5/24 (21%)</td>
</tr>
<tr>
<td>65 dB SPL</td>
<td>7/20 (35%)</td>
<td>14/20 (70%)</td>
<td>11/21 (52%)</td>
</tr>
<tr>
<td>55 dB SPL</td>
<td>4/11 (11%)</td>
<td>8/14 (60%)</td>
<td>5/11 (46%)</td>
</tr>
</tbody>
</table>
EVIDENCE SUPPORTING LINK BETWEEN CAEPS & PERFORMANCE

1. hearing aids
2. cochlear implants
3. auditory neuropathy
4. listening training
5. ‘central deafness’

RELATIONSHIP BETWEEN OBLIGATORY CAEPS & FUNCTIONAL MEASURES IN YOUNG INFANTS
(Golding et al, 2007)

• Function measured using PEACH questionnaire (in good hearing aid users). Involves parents reporting frequency of aural/oral behaviour

• Quality of CAEP on simple grading
 - 0= no response
 - 1= clear response to one stimuli
 - 2= clear response to 2 stimuli
 - 3 = clear responses to three stimuli
Age-corrected PEACH score by cortical grading
(aided infants/children, mean age 8 mth)

(Sig correlation: Examiner grading $r_s=0.45$, $p=0.01$; MANOVA grading $r_s=0.60$, $p=0.001$)

Central Auditory Maturation and Babbling Development in Infants With Cochlear Implants

(Modified from Sharma et al, 2004)
SPEECH PERCEPTION & CAEP IN CHILDREN WITH AUDITORY NEUROPATHY
(Rance et al, 2002)

• Speech recognition & CAEP (measured around the same time) from 15 children with AN who wore HAs
• Around 50% had CAEP and some degree of speech recognition (but wide range of performance)
• The remaining 50% had very poor speech recognition and no CAEP

POSSIBLE CLINICAL PROCEDURE

1. To demonstrate audibility
 - /m/, /t/ & /g/ at 65 dB SPL, unaided & aided

2. To evaluate adequacy of frequency response
 - If no response to /m/, /t/ & /g/ consider increasing low, high and mid-frequency gain, respectively

3. To gauge degree of audibility of speech sounds
 - If no response at 65 dB SPL, retest at 75 dB SPL
 - If response at 65 dB SPL, retest at 55 dB SPL

(Adapted from Dillon, 2005)
EXAMPLES

Girl with severe hearing-impairment
Attends Grammar School for the Deaf
Boy with severe hearing-impairment
Attends Grammar School for the Deaf
Late fitting & poor speech/language skills

Unaided

Aided

PHONAK, STUTTGART
24th APRIL 2010

Male age 14 years
CHARGE syndrome: severe LD & visual impairment
Tangible reinforcement audiometry: ca 80 dB HL ?? unaided, 60 dB HL?? aided

<table>
<thead>
<tr>
<th></th>
<th>/m/</th>
<th>/g/</th>
<th>/t/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaided</td>
<td>RESPONSE</td>
<td>NO RESPONSE</td>
<td>NO RESPONSE</td>
</tr>
<tr>
<td></td>
<td>[Used info to reduce low frequency gain]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aided</td>
<td>RESPONSE</td>
<td>RESPONSE</td>
<td>RESPONSE</td>
</tr>
</tbody>
</table>

Courtesy of Vanessa Salisbury, Feb’ 2010
Aided CAEP
Male (64 years) severe LD
Previously diagnosed with severe SNHL

Take-home message
1. Infants are provided with HAs before good quality behavioural information is available
2. It is possible to measure speech-evoked CAEPs (aided & unaided) in infants
3. There may be a role for speech-evoked CAEPs in HA assessment