Frequency Compression Technology in Hearing Aid Fitting in Children

Andrea Bohnert

University Medical Center of the Johannes Gutenberg-University Mainz
Department for Oto-Rhino-Laryngology, Division for Communication Disorders
Speechspectrum

Identification/Intelligibility of high frequency sounds

- Severe Hearing loss:
 Difficulty in recognizing high frequency speech sounds like: /f/, /s/, /sh/

- Grammatical Information:
 - Plurality of pronouns
 - Possessive pronouns

Pat Stelmachowicz et al., 2000 – 2004, Boys Town
Speechspectrum

/S/ male, female, child speaker

~ 5 kHz male
~ 6-9 kHz female
~ 9 kHz child

Boothroyd et al, 1992
Stelmachowicz et al, 2001
Hearing instruments

More gain in high frequencies?

- Increased risk of feedback
- More high frequency gain is often considered uncomfortable – too loud, too shrill, too sharp
- Dead Regions - „off frequency listening“
Hearing Impairment

Dead Regions

„... regions in the cochlea with no or few functioning inner haircells and /or neurons“

(Moore 2004)
Frequency compression (FC) = SoundRecover

Launer, Chicago 2007
Frequency Compression (FC)

Original signal

Simulated high frequency hearing loss

Non-linear frequency compression

Launer, Chicago 2007
Frequency Compression (FC)

- Cut-off frequency between 1.5 and 6 kHz
- Compression ratio between 1.5:1 and 4:1
- Compression is only applied to frequencies above the cut-off frequency

Launer, Chicago 2007
Some studies on Frequency Compression

Glista et al., 2009a, *Int J Audio1-13, DOI: 10.1080/14992020902971349*

Glista et al., 2009, *Hearing Review, 16 (12): 20-24*

- FC improves detection/recognition (group vs individual)
- Significant candidacy factors (hearing loss, age group)

Wolfe et al., 2010, *J Am Acad Audiol 21 (10): 618-628*

Wolfe et al., 2011, *Int J Audiol 2011 50, 396-404*

- FC improves audibility for sounds and speech recognition in quiet
- FC offers improvement in recognition in noise

Bohnert et al., 2010, *Eur Arch Otorhinolaryngol,DOI 10.1007/s00405-009-1170-x*

- FC improves speech recognition in quiet and in noise
Pediatric Fitting Method for FC

Protocol developed by

Ｇlista & Scollie

Audiology Online 2009

Scollie, Glista, Bagatto, Moodie

Ontario Infant Hearing Program 2011

Frequency-Lowering Hearing Aids

Protocol Addendum and Support Document
Fitting Method for FC (pediatric)

1. Frequency response should be based on DSL 5 m [i/o] child

2. Fit to target with FC disabled
 Provide audibility of high frequency cues as good as possible
 Measure with speech shaped signal / ISTS

3. Enable FC

4. Measure with speech shaped signal / ISTS and with filtered high frequency speechband stimuli

5. Life voice - /s/ and /sh/
Verification

- Speech shaped signal / ISTS Signal (International Speech Test Signal)
- Filtered high frequency speech band signal
Verification

- Filtered high frequency speech band signal (Speechsignal)

Center frequencies:
- 3150 Hz
- 4000 Hz
- 5000 Hz
- 6300 Hz

Screenshot from Audioscan Verifit
FC disabled / enabled

- Filtered high frequency speech band signal (Speechsignal)

Without FC, 6300 Hz below threshold
FC disabled / enabled

- Filtered high frequency speech band signal (Speechsignal)

With FC, 6300 Hz above threshold

Without FC, 6300 Hz below threshold

/s/ is audible now!
FC settings

- Software provides default setting for FC
- Cut off frequency / Compression ratio set to audiogram better ear
- Verificate audibility of /s/ and /sh/
- Fine-tune if necessary....!!!!!!!
FC settings

- Software provides default setting for FC
- Cut off frequency / Compression ratio set to audiogram better ear
- Verify audibility of /s/ and /sh/
- Fine-tune if necessary....!!!!!!!
Fine tuning hints for FC setting

FC is too weak – not audible enough

- High frequency cues are not audible
- No improvement, neither in measurements nor in verbal reports
Fine tuning hints for FC setting

FC is too strong - overlapping

- /s/ and /sh/ cannot be distinguished
- Patient hears him/herself lisping
- Everything sounds sharp, shrill, too loud
- Issues may occur mainly with female voices (start with weaker settings and let acclimatize)
Fine tuning hints for FC setting

FC well adjusted:

- Difference between /s/ and /sh/ is audible
- Patient perceives everything a bit “softer"
- Speech is perceived as clearer
- Patient may hear sounds not heard before
Two examples.....

Sub A steep loss

10 y, good speech development
Traditional HI = Eleva 411

Sub B flat loss

8 y, good speech development
Traditional HI = Siemens Artis P
Two examples..... Sub A steep loss

Traditional HI

NLFC HI
Two examples.....

Sub B flat loss

Traditional HI

NLFC HI
Case studies

Speech Scores open and closed sets

<table>
<thead>
<tr>
<th></th>
<th>Trad HA</th>
<th>Freq Comp T2</th>
<th>Freq Comp T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open set words</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 dB</td>
<td>30 %</td>
<td>50 %</td>
<td>60%</td>
</tr>
<tr>
<td>65 dB</td>
<td>60%</td>
<td>70 %</td>
<td>90%</td>
</tr>
<tr>
<td>Closed set quiet 65 dB SRT</td>
<td>36 dB</td>
<td>32 dB</td>
<td>27 dB</td>
</tr>
<tr>
<td>Closed set noise 65 dB SNR</td>
<td>2 dB</td>
<td>-5 dB</td>
<td>-3,5 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trad HA</th>
<th>Freq Comp T2</th>
<th>Freq Comp T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open set words</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 dB</td>
<td>0 %</td>
<td>0 %</td>
<td>40%</td>
</tr>
<tr>
<td>65 dB</td>
<td>10 %</td>
<td>40%</td>
<td>70%</td>
</tr>
<tr>
<td>Closed set quiet 65 dB SRT</td>
<td>56 dB</td>
<td>42 dB</td>
<td>42 dB</td>
</tr>
<tr>
<td>Closed set noise 65 dB SNR</td>
<td>9 dB</td>
<td>7,7 dB</td>
<td>3 dB</td>
</tr>
</tbody>
</table>

Subj A			
Subj B			

T2 = 1 week / T5 = 6 months
Case studies

Subject A

Hears new sounds, birds etc.
More relaxed after school
Rather relaxed facial expression
Trivial sounds are recognized earlier
TV set to normal volume
Speaks with clearer voice – more self confident

Subject B

Teacher can be heard with less effort
More relaxed after school
Audio books can be heard with normal volume
More open-minded – takes part in holiday camps with 50 children
Does not accept everything in conversation, but argues
Summary

Several studies showed significant improvements in:

- Aided sound detection
- Speech recognition in quiet and in noise
- Subjective benefit
- For mild to moderate, severe and profound HL
- Acclimatization effects for newly audible HF sounds
Summary

✓ Viable and robust technology for all hearing losses
✓ It does need to be individually and carefully fitted

Respect the protocols for

fitting Lowering Technologies!!
Clinical implications - future questions....?

We still need to learn more........for example:

- Cochlear implant candidacy
- Asymmetrical hearing loss
- Auditory neuropathy disorders
- Bimodal fittings
Clinical implications - future questions....?

- Test results may be not always consistent
- Do we have the right tests to show all effects of modern technology?

We should always listen to our children.....