Spatial processing in adults with hearing loss

Harvey Dillon
Helen Glyde
Sharon Cameron

, Louise Hickson, Mark Seeto, Jörg Buchholz, Virginia Best
Spatial processing facilitates speech understanding in noise for normal-hearers.

Hearing-impaired people struggle in noise despite amplification.

Do hearing-impaired people experience spatial processing deficits?
What is Spatial Processing?

- Spatial Processing is the ability to selectively attend to sounds arriving from one direction while suppressing sounds arriving from other directions.

- It can be assessed by measuring speech understanding in spatially-separated and co-located noise.
What is SPD?

Noise

Noise

Speech

Noise
Study 1 - Aims

- To investigate the effect of hearing impairment and aging on spatial processing ability.
- To examine the relationship between spatial processing and self-report measures of difficulty.
Method

- Participants: 80 participants aged between 7 & 89 years
 - English as a first language
 - Normal middle ear function on day of testing
 - No history of learning or attention disorders
 - Up to a moderate-severe sensorineural hearing loss
Age and hearing loss

![Graph showing the relationship between age and hearing loss in dB HL.](image)
• The Listening in Spatialized Noise - Sentences Test (LiSN-S)
 – Adaptive speech in noise test using spatialized stimuli. (Target adaptive, distractors at 55 dB SPL)
 – Assesses how well normal-hearing people use spatial cues and pitch cues to understand speech in noise
 – Includes amplification
Four LiSN-S Conditions

Same Voice - 0° Condition

Different Voices - 0° Condition

Same Voice - ±90° Condition

Different Voices - ±90° Condition

Talker Advantage

Total Advantage

Spatial Advantage

Low cue

High cue
Adaptation of LiSN-S for hearing-impaired

Enter the participant’s hearing thresholds

Software applies required gain according to a NAL-RP to the speech files.
Changes in LiSN-S scores with hearing loss

Speech reception threshold (dB SNR)

Better

4FAHL in worse ear (dB HL)
Results: Multiple regression

<table>
<thead>
<tr>
<th></th>
<th>p-value</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>4FAHL (worse)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Cue SRT</td>
<td><0.001 *</td>
<td>0.075</td>
</tr>
<tr>
<td>High Cue SRT</td>
<td><0.001 *</td>
<td>0.001 *</td>
</tr>
<tr>
<td>Spatial Advantage</td>
<td><0.001 *</td>
<td>0.104</td>
</tr>
<tr>
<td>Talker Advantage</td>
<td><0.001 *</td>
<td>0.523</td>
</tr>
<tr>
<td>Total Advantage</td>
<td><0.001 *</td>
<td>0.059</td>
</tr>
</tbody>
</table>
Results: The effect of hearing impairment

Low Cue SRT vs 4FAHL
p <0.001 *

High Cue SRT vs 4FAHL
p <0.001 *
Results: The effect of hearing impairment

Spatial Advantage vs 4FAHL

$p <0.001$ *

1.6dB decrease in SRT
A Quick Summary

• Spatial processing ability declines as hearing loss increases.

• The non-spatially separated measures of the LiSN-S are less affected by hearing loss than the spatialized measures.
Effect of mild loss

High cue SRT = -19.101 + 0.2377 * x

![Graph showing the relationship between 4FAHL worse ear and high cue SRT in decibels.]
Results: The effect of aging

Low Cue SRT vs Age
p = 0.075

High Cue SRT vs Age
p = 0.001 *
Results: The effect of aging

Spatial Advantage vs Age

$p = 0.104$
• All hearing-impaired people will have a spatial processing disorder of some degree.

• Spatial processing ability declines only mildly (insignificantly) with age.

• Use of non-spatialized speech in noise tests will underestimate difficulty.

• Even slight hearing loss results in loss of SRT in noise.
Spatial processing facilitates speech understanding in noise for normal-hearers.

Hearing-impaired people struggle in noise despite amplification.

All hearing-impaired people have a spatial processing deficit of some degree.

Can spatial processing deficits in hearing-impaired people be remediated?
Study 2 - Aims

- Can spatial processing deficits in hearing-impaired people be remediated (with LiSN & Learn)?

- (LiSN & Learn already shown to be effective for children with spatial processing disorder and normal hearing thresholds)
What is LiSN & Learn?

- Computer based auditory training software
- Originally designed for children
- Five games presented over headphones
- Target sentences at 0° azimuth; competing stories at ±90° azimuth.
- Weighted up-down adaptive procedure used to adjust the signal level of the target
- SRT calculated over 40 sentences
LISN & Learn Game

Target at 0°:

Distracters at + and -90°:
Target: The horse kicked six wet shoes
Method

- 10 participants (5 children & 5 older adults) with symmetrical sensorineural hearing loss
- Assessed pre- and post-training on LiSN-S, questionnaire of listening difficulty & BKBs in noise
- LiSN & Learn speech files shaped with NAL-RP gain for each participant.
- Train with LiSN & Learn 15 min/day, 5 days/week, 12 weeks.
Preliminary Results: LiSN & Learn (n = 6)

Better
Preliminary Results: LiSN-S (n = 6)

- **High Cue SRT (dB)**
 - Pre-training: -10 dB
 - Post-training: -11 dB
 - **p = 0.83**

- **Low Cue SRT (dB)**
 - Pre-training: -1.0 dB
 - Post-training: -0.1 dB
 - **p = 0.10**
Preliminary Results: LiSN-S (n = 6)

Spatial Advantage (dB)

pre-training post-training

p = 0.51
Spatial processing deficits cannot be remediated in hearing-impaired children or adults.

Spatial processing facilitates speech understanding in noise for normal-hearers.

All hearing-impaired people will have a spatial processing deficit of some degree.

Hearing-impaired people struggle in noise despite amplification.

Spatial processing deficits cannot be remediated in hearing-impaired children or adults.

What causes spatial processing deficits in hearing-impaired people?

How do people with normal-hearing achieve spatial processing?
Interaural cues

- Interaural Time Differences (ITDs) dominant for low frequency sounds.
- Interaural Level Differences (ILDs) dominant for high frequency sounds.
Previous Research

- Theories about use of ITDs and ILDs largely generalised from localization research.
- ITDs dominant for localising speech
- Very little evidence to show a link between speech understanding in spatially separated noise and localization.
• To investigate the relative importance of ITDs and ILDs to spatial processing.
 • Using Listening in Spatialized Noise – Sentences test (LISN-S) paradigm
 • Special version with altered cues
- 12 normal-hearing participants aged 24 – 53 years

<table>
<thead>
<tr>
<th></th>
<th>ITD cues</th>
<th>ILD cues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ITD only</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>ILD only</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>
Results

- No sig. difference between spatial advantage in ILD only and reference condition (p = 0.938).

- Spatial advantage is significantly reduced in ITD only condition (p < 0.001).
Conclusion

• Interaural Level Differences are the dominant cue used in this spatial processing task.

• Interaural Time Differences alone do result in some spatial release from masking.

• The benefits from ITD and ILD not additive.

• Suggests that hearing-impaired people are unable to take advantage of ILD cues.
ILDs are the dominant interaural cue used by normal-hearers. Spatial processing facilitates speech understanding in noise for normal-hearers. All hearing-impaired people will have a spatial processing deficit of some degree. Hearing-impaired people struggle in noise despite amplification. Spatial processing deficits cannot be remediated in hearing-impaired children or adults. What causes spatial processing deficits in hearing-impaired people?
• ILD use may be impaired if hearing thresholds limit audibility of speech.

• Study 1 provided amplification to improve audibility but did not match audibility to normal-hearers.

• Does reduced audibility cause of spatial processing deficits in hearing-impaired people.
Method

- 12 normal hearing adults (25 – 47 years)

- Frequency specific filtering (attenuation) applied to LiSN-S to match audibility experienced by average hearing-impaired listener in Study 1.

- Results compared normative data for normal-hearers and subset of 16 hearing-impaired participants
Results

Reduced audibility different from:
- Normal hearers
- Hearing impaired
Conclusions

- Reduced audibility explains a large portion of the observed spatial processing deficits.

- Approximately 2 dB of spatial advantage remains unexplained.
ILDs are the dominant interaural cue used by normal-hearers.

Spatial processing facilitates speech understanding in noise for normal-hearers.

All hearing-impaired people will have a spatial processing deficit.

Hearing-impaired people struggle in noise despite amplification.

What causes the remaining spatial processing deficits that aren’t explained by audibility?

How do people with normal-hearing use ILDs achieve spatial processing?

Audibility + ???? causes spatial processing deficits in hearing-impaired people.
Study 5 - Aims

• One way that ILDs may be used to achieve spatial processing is through cross-ear dip listening.

• Is cross-ear dip listening used by normal-hearers?

• Do widened auditory bands could reduce hearing-impaired people’s spatial processing ability.
• Tested Cross-ear normal hearing (CENH) and Cross-ear hearing impaired (CEHI)

• CEHI used widened auditory bands.

• 22 normal-hearing adults (18 – 29 years)
Results
• Cross-ear dip listening explains some, but not all, of the benefit gained from spatial processing.

• Widened auditory bands may explain the spatial processing deficits not attributable to audibility.
Overall Interpretation

• Normal hearers use level differences between the ears → combine bands across ears that have the better SNR

• Normal hearers supplement this with spatial cues available from either ITDs or ILDs

• Hearing impaired people lose lower level information in the gaps, even with (linear) amplification

• Widened auditory bands further limits spatial processing ability
ILDs are the dominant interaural cue used by normal-hearers. But the puzzle isn’t complete.

Spatial processing facilitates speech understanding in noise for normal-hearers.

All hearing-impaired people will have a spatial processing deficit of some degree.

Hearing-impaired people struggle in noise despite amplification.

Spatial processing deficits cannot be remediated in hearing-impaired children or adults.

ILDs are the dominant interaural cue used by normal-hearers.

Audibility + widened auditory bands in the cochlear cause spatial processing deficits in hearing-impaired people.

How do these findings apply to situations where the target isn’t coming from 0 degrees?

How do we compensate for spatial deficits?
So what for the clinician?

- Hearing impaired people *will* need better SNR than normal hearers
- Deficit in SNR *will* be underestimated if speech and noise are co-located.
- Deficit in SNR *cannot* be trained
- Deficit in SNR can *easily* be measured using LiSN-S
- Implications for directional microphones, wireless remote hearing aids are clear
Clinical Implications

High-cue condition:
If the deficit re normal hearing is:

• < 3 dB Should do well with hearing aids, even in noisy places.

• 3 to 6 dB Should do well with directional hearing aids, even in noisy places, provided the target or the dominant noise is close.

• > 6 dB Will often need more than any hearing aid can offer to enable effective communication in noise places – remote microphone hearing aids.
SNR deficit

Cameron, Glyde & Dillon (in press)
Acknowledgements

This research was financially supported by the HEARing CRC established and supported under the Australian Government’s Cooperative Research Centres Program, and by the Commonwealth Department of Health and Ageing.