

Challenges in Audiologic Diagnosis Illustrative Case Examples

Sound for a Young Generation Conference

Buenos Aires, Argentina October 13-12, 2012

Patricia Roush, AuD University of North Carolina School of Medicine Chapel Hill, North Carolina, USA

University Of North Carolina Chapel Hill, North Carolina USA

Pediatric Audiology and CI Teams

CASTLE pre-school (SLPs, teachers of the Deaf, AVTs)

Total 1800 infants and children

- » 1000 using amplification
- » 600 with cochlear implants
- » 200+ with ANSD diagnosis

Where is North Carolina?

Early Hearing Detection and Intervention (EHDI) in North Carolina

- Passed legislation in 1999
- Started screening in 2000
- 130,000 births per year
- Screening approximately 98% in 89 hospitals

Newborn Hearing Screening... The First of Many Steps

Audiologic Management of Infants and Young Children: Essential Components

- Diagnostic Evaluation
 - > Auditory Brainstem Response (ABR)
 - > Acoustic Immittance
 - Otoacoustic Emissions
- Hearing Aid Selection and Fitting
 - > Appropriate selection of device (size, features)
 - Hearing aid programming
 - Hearing aid verification
 - Hearing aid validation
- Behavioral Audiometry
 - Visual reinforcement audiometry (VRA)
 - Conditioned play audiometry (CPA)

Assessment: Electrophysiologic Measures

ABR

- » Tone burst stimuli used to estimate thresholds for low, mid and high frequencies
- » When ABR shows no response, must use single polarity clicks to rule out auditory neuropathy
- » Air conduction and bone conduction
- Otoacoustic Emissions
- Acoustic immittance measures
 - » (1000Hz probe tone <4 months)</p>

Audiogram estimated based on electrophysiologic tests

Otologic Evaluation

- Electrocardiogram (Jervell and Lang-Neilson)
- Imaging of the ear
 - » Malformations
 - » Labyrinthine Ossification
 - » 8th nerve aplasia
 - » Tumors
 - » Associated Brain problems
- Lab Studies as needed
 - » VDRL, Thyroid function, lipid profile, ESR
 - » Renal ultrasound
- Eye examination/Electro-retinography (Usher's)
- Genetic studies
 - » GJB2 and GJB6 testing +/- others as indicated
 - » Able to obtain genetic and CMV tests from newborn blood spot stored in state database
- Other Medical Referrals

Hearing Aid Fitting in Infants

- Prescriptive formula selected
 - » e.g. DSL, NAL-NL1
- Program Hearing instrument
 - » Manufacturer's software used
- Verification of Fitting
 - » An alternative procedure to traditional probe microphone measures for use with infants and children is Real Ear to Coupler Difference measurement (RECD)

Goal: Audible Speech Signal for Average Speech Inputs...

Behavioral Audiologic Assessment

- Begin VRA at 6-7 months
- Goal: Complete audiogram for each ear (air and bone) by 8-9 months of age.
- Hearing aids readjusted as new threshold information is obtained

Referral for Early Intervention

- Referral to "Beginnings" on day hearing loss diagnosed (www.ncbegin.org)
- Family contacted within one week of diagnosis and home visit from early childhood specialist scheduled
- Weekly home visits with teacher of the HI scheduled as soon as family decides on initial educational approach

Evaluation of Speech Perception

Parent Questionnaires (e.g. PEACH, IT-MAIS or MAIS)

```
(Ching and Hill, 2007, Zimmerman-Phillips, et al., 2000; Robbins, et al., 1991)
```

- Early Speech Perception Test battery (ESP) (Moog and Geers, 1990)
 - Low Verbal
 - Standard
- MLNT/LNT words and phonemes (Kirk, et al, 1995)
- PB-K words and phonemes (Haskins, 1949)
- HINT sentences in quiet and noise conditions

Sounds Easy But...

Challenges Remain

11/23/2012

Case #1

Introduction

- Born at full term without complications
- Newborn hearing screening status unknown
- View the following slides and try to predict child's audiogram

First ABR in Natural Sleep

Second ABR Under General Anesthesia Following MRI

Otoacoustic Emissions Present Bilaterally

Audiogram at Age 10 years

Speech Recognition Testing:

» Left Ear: 96%

» Right Ear: 12%

Tympanometry:

» Right: Normal

» Left: Normal

Acoustic Reflexes:

» Right: Absent

» Left: Absent

DPOAEs:

» Right: Present

» Left: Present

11/23/2012

Radiologist's Report of MRI using N.VIII Protocol:

- > The right cochlear nerve is not visualized;
- The left cochlear nerve appears significantly atrophied versus possibly aplastic
- > Impressions:
 - Findings concerning for right cochlear nerve aplasia and left cochlear nerve aplasia versus hypoplasia

11/23/2012 22

Additional Information

- Child was 10 years old at time of referral to our program
- Referred from school audiologist who questioned possibility of ANSD after testing showed present OAEs and absent acoustic reflexes
- Following audiologic and otologic evaluations child referred to pediatric neurologist
- Important to consider what management recommendations might have been made in infancy with only ABR test findings and imaging available

Key Points

- A test battery approach is needed for accurate audiologic diagnosis.
 - No single test available provides all of the diagnostic information necessary to make management decisions
- > ABR useful in estimating behavioral thresholds but...
 - > ABR is not a test of hearing
 - > Confirmation with behavioral audiometry remains essential
- Radiologic imaging provides useful information in search for etiology of hearing loss but results obtained don't always tell the whole story
- Otoacoustic emissions useful indicator of outer hair cell function but should be used as a component in a test battery not in isolation

11/23/2012

CASE #2

Background:

- Newborn Screen with AABR:
 - » Referred on left
 - » Passed on right
- Age 2 months:
 - » Diagnostic ABR: moderate HL left, normal right
- Age 2 ½ months:
 - » Otologic evaluation: MRI, EKG, connexin 26 and CMV testing ordered

Background:

Age 3 months:

- » Referred to Beginnings for information and referral to early intervention
- Age 4 months:
 - » MRI: Bilateral enlarged vestibular aqueducts and enlargement of endolymphatic sacs (EVAS or LVAS)
 - » Otologist advises of risk for progressive hearing loss and avoiding head trauma and refers to neurology and genetics for evaluation

Background:

- 6 months: Genetics consult completed
 - » Most common cause of EVAS is alteration of Pendred gene
 - » Several other syndromes can be associated with EVA including branchio-oto-renal syndrome
 - » Will test for Pendred's and if negative will order renal ultrasound
 - » Lab results shows child is connexin 26 negative but has two copies of gene for Pendred's
 - » Recommendation made for pediatrician to periodically monitor thyroid levels

Age: 8 months

Tympanometry

» Right: normal

» Left: Negative middle ear pressure (-275)

Otoacoustic Emissions

» Right: Absent above 2000Hz

» Left: Absent

Age: 12 months

- Right ear:
 - » Normal
- Left ear:
 - » Mild to moderate
- Tympanometry
 - » Right: normal
 - » Left: normal

Age: 17 months

- Difficult to test but right ear responses poorer than expected
- Tympanometry
 - » Right: normal
 - » Left: normal
- Family advised of our concern re progression of HL

Age: 18 months

- Child will not tolerate insert earphones
- Unable to rule out hearing loss for "better ear"
- Tympanometry
 - » Right: Negative middle ear pressure (-225)
 - » Left: Negative middle ear pressure (-190)
- Repeat ABR with sedation recommended

Age 20 months: Estimated Thresholds (eHL) Based on Sedated Tone Burst ABR

 Binaural hearing aids and personal FM dispensed 2 weeks later

Age: 22 months

- Continued progression of hearing loss noted
- Tympanometry
 - » Right: normal
 - » Left: normal

Age: 23 months

- Play audiometry
- Hearing aids exchanged for model with more power
- Hearing aids programmed for best match to DSL targets

Age: 24 months

- Hearing aids readjusted to better match DSL targets
- Recently fitted with new hearing aids with frequency compression
- Speech and language evaluation scheduled with SLP from CI team to obtain baseline and review current services
- Child will be monitored regularly and referred for CI evaluation if indicated

Age: 4 years

- Aided Testing
 - » SRT=25dBHL
- Aided PBK score:
 - » 80% at 55dBHL

Age: 4 years, 11 months

- Limited HA benefit even with HA with FC
- Aided speech recognition:
 - » 36% at 55dBHL (PBKs)
- Struggling in pre-school
- After extensive discussion with family, referred to CI team for evaluation
- Note air/bone gap-

Age 7 years: HA right, CI left

Tympanometry:

Normal bilaterally

Speech Perception Testing:

SRT:

HA right: 25dBHL

CI left: 25dBHL

HA&CI: 15dBHL

Recorded monosyllabic words (PBKs):

HA right: 40%

CI left: 76%

11/23/20HA&CI: 94%

Large Vestibular Aqueduct Syndrome (LVAS) or (EVAS)

- 5-15 % of children with permanent HL have EVAS
- Vestibular aqueduct considered enlarged if >1.5 mm
- Most well known cause is mutations in the SLC26A4 formerly known as PDS gene
- May present with conductive or mixed HL

Key Points

- Comprehensive team evaluation useful when working with infant with newly diagnosed HL
 - » Audiology, ENT, Genetics, Early Intervention Specialists, Pediatrics all played role
- ABR used to determine initial thresholds for first hearing aid fitting and to help when results are ambiguous but...
- Behavioral audiometry with VRA to obtain accurate unaided thresholds most useful tool after six months of age in this case
- Evaluation of unaided hearing thresholds combined with use of hearing aid verification measures allowed child to continue to make progress even with progressive changes to hearing

CASE #3

Background

- Born at full term without complications
- Newborn Screen with AABR:
 - » Failed bilaterally
- Age 5 months:
 - » Diagnostic ABR following tube placement:
 - Borderline normal to mild HL right
 - Mild to moderate HL left
 - » Otologic evaluation:
 - Connexin 26: Negative
 - MRI consistent with Large Vestibular Aqueduct Syndrome (LVAS)

Plan

- Results discussed with family
- Referral made for early intervention services
- Parents chose not to proceed with amplification for left ear
- Recommended return appointments to obtain ear and frequency specific measures for each ear

Age 11 months

Tympanometry:

» Flat with large physical volumes bilaterally

Age 14 Months

Tympanometry:

- » Right: Flat with normal ear canal volume
- » Left: Flat with large ear canal volume

Right Ear

Left Ear

Age 22 Months

- Child making good progress with speech and language
- Mother offered but declined El services because she feels child is doing very well
- Tympanometry:
 - » Right: Flat with large ear canal volume
 - » Left: Type A

Right Ear

Left Ear

Age 29 Months

- Child more difficult to test
- Family feels child hears fine
- **Tympanometry**
 - » Right: Flat with large ear canal volume
 - » Type A left
 - Repeat ABR recommended

ABR Test Results

- Tone burst ABR results consistent with bilateral hearing loss
- Family agrees to proceed with amplification
- Child fitted with binaural hearing aids

Age 3 years, 2 months

Tympanometry:

» Flat with large physical volumes bilaterally

Age 3 years, 5 months

- Masked bone conduction testing and speech perception testing completed
- Score: 24/24 on ESP monosyllable test (closed set test)

Age 4 years

Tympanometry:

- » Right: Flat with large ear canal volume
- » Left: Negative pressure

Key Points

- In this case, conductive hearing loss (CHL) due to middle ear fluid added additional confusion to already difficult diagnosis.
- CHL in presence of normal tympanometry or continued presence of CHL following tube placement should raise suspicion for LVAS or other "inner ear conductive HL"

Key Points

- ➤ Inner ear conductive hearing loss is common finding in individuals with EVAS as well as other conditions:
 - > superior, posterior and lateral canal dehiscence
 - > X-linked stapes gusher
- Imaging studies such as MRI and CT are often helpful in determining etiology of childhood HL
- When imaging studies are not available, the presence of air/bone gap with normal tympanometry or open tubes may alert audiologist to possibility of EVAS or other inner ear malformations

Gracias!

Patricia Roush, AuD

Associate Professor

Department of Otolaryngology

Director of Pediatric Audiology

University of North Carolina Hospitals

University of North Carolina

School of Medicine

Office: (919) 843-1396

email: proush@unch.unc.edu

