Plasticity in the developing auditory system

Karen A. Gordon

kKids

CHLEAR

SICK CHILDREN

PROGRAM

Cochlear Implant Team

DIRECTORS

- Blake Papsin
- Karen Gordon
- Vicky
 Papaioannou

RESEARCH ASSISTANT

• Stephanie Jewell

STUDENTS

- Daniel Wong
- Patrick Yoo
- Michael Deighton
- Salima Jiwani
- Parvaneh Abbasalipour
- Nikolaus Wolter
- Francis Manno
- Melissa Polonenko
- Morrison Steele
- Carol Duong
- Gurvinder Toor
- Hena Kazmi
- Katie McCann
- Brian Wong

- TEAM CLINICIANS
- Sharon Cushing
- Adrian James
- Susan Blaser
- Gina Sohn
- Naureen Sohail
- Laurie MacDonald
- Mary Lynn Feness
- Pat Di Santos
- Valerie Simard
- Nancy Greenwald-Hood
- Susan Druker

COLLABORATORS

- Local SickKids
 - Bob Harrison
- Tracy Stockley
- Mark Crawford
- Maureen Dennis

Local - external

- Sandra Trehub
- Frank Russo International
- Robert Cowan
- Richard van Hoesel

Hearing loss

Cochlear implants and hearing aids "awaken" the auditory pathways

What pathways are awakened and can they develop normally?

 Effects of bilateral deafness?

 Developmental plasticity?

What pathways are awakened and can they develop normally?

- Effects of bilateral deafness?
 - Abnormal cortical function
 - Effects of etiology
- Developmental plasticity?
 - Normal and abnormal auditory development
 - Effects of unilateral stimulation

Cortical effects of bilateral deafness in early development

Lee, et al., Nature, 2001

Deafness allows reorganization of association areas of auditory cortex

Fine, et al., 2005

Neural competition in development

Development

Sherman, Nature Neuroscience 3, 525 - 527 (2000)

Neural competition in development

Sherman, Nature Neuroscience 3, 525 - 527 (2000)

Synaptic pruning in developing human cortex

Abnormal synaptic changes in congenitally deaf cats

Kral and O'Donaghue, NEJM, 2010

Deafness in children is not uniform

SANDANDAN MANAN maran

Multiple possible cochlear lesions

Kral and O'Donaghue, NEJM, 2010

Effects of GJB-2 mutations on auditory nerves

eN1

Propst, et al., 2006

Effects of deafness on cortical responses

Responses from the deaf and immature auditory cortex

Cortical responses reflect multiple effects of deafness in childhood

(144 cortical responses from 72 young children receiving bilateral CIs simultaneously)

- Non-significant demographic influences (p>0.05)
 - Age at implantation, duration of deafness, age at onset of bilateral deafness, duration of residual hearing, cochlear abnormalities, neonatal complications

Gordon et al., Clin Neurophys, 2010

Cortical immaturity predicted by GJB-2 deafness

Gordon et al., Clin Neurophys, 2010

Summary of effects of bilateral deafness

- Reorganization in thalamo-cortical areas
 - Due to competition from non-auditory inputs (visual, somatosensory)
- GJB-2 deafness is an important predictor of activity in auditory nerve and cortex
 - GJB-2 mutations predict uniform activity in auditory nerve and very early stage of cortical development

What pathways are awakened and can they develop normally?

- Effects of bilateral deafness
 - Abnormal cortical function
 - Effects of etiology
- Developmental plasticity?
 - Normal and abnormal auditory development
 - Effects of unilateral stimulation

Unilateral cochlear implants promote development in auditory brainstem

Gordon et al., Ear Hear, 2003

Normal Hearing

Cochlear Implant

Brainstem and thalamo-cortical responses mature with CI use

Brainstem and thalamo-cortical responses mature with CI use

Unilateral cochlear implants provided in early life promote cortical development

Gordon et al., Clin Neurophys, 2010

Unilateral cochlear implants provided in early life promote cortical development

Gordon et al., Clin Neurophys, 2010

Cochlear implant stimulation promotes normal-like trajectory of cortical auditory development

Auditory evoked cortical responses are abnormal in the second implanted ear

Unilateral cochlear implant use

Imaging brain activity in cochlear implant users

Abnormal cortical activity after right unilateral cochlear implant

Binaural hearing

 Sound reach one ear before the other and at different levels

 These cues must be detected by the central auditory system

Neural competition in development

Sherman, Nature Neuroscience 3, 525 - 527 (2000)

Reorganization in auditory pathways after unilateral implant use

Simultaneous bilateral implantation protects the cortex against reorganization

Bilateral implantation protects the cortex against reorganization if the delay is short

Effects of unilateral CI use are not reversed by bilateral implantation

Symmetric auditory activity supports SickKids **binaural processing**

Abnormal binaural processing with unilateral implant use

SickKids

ILEAR

What pathways are awakened and can they develop normally?

Effects of bilateral deafness

- Abnormal cortical reorganization if left untreated
- Unique effects of BJG-2 associated hearing loss

Developmental plasticity

 Unilateral stimulation drives auditory development but also creates abnormalities in bilateral pathways.

Clinical implications for children with SickKids hearing loss

- Limit duration of bilateral auditory deprivation
- Understand the onset and cause of hearing loss in childhood
- Limit duration of unilateral auditory deprivation

Thank you to all of our participants

