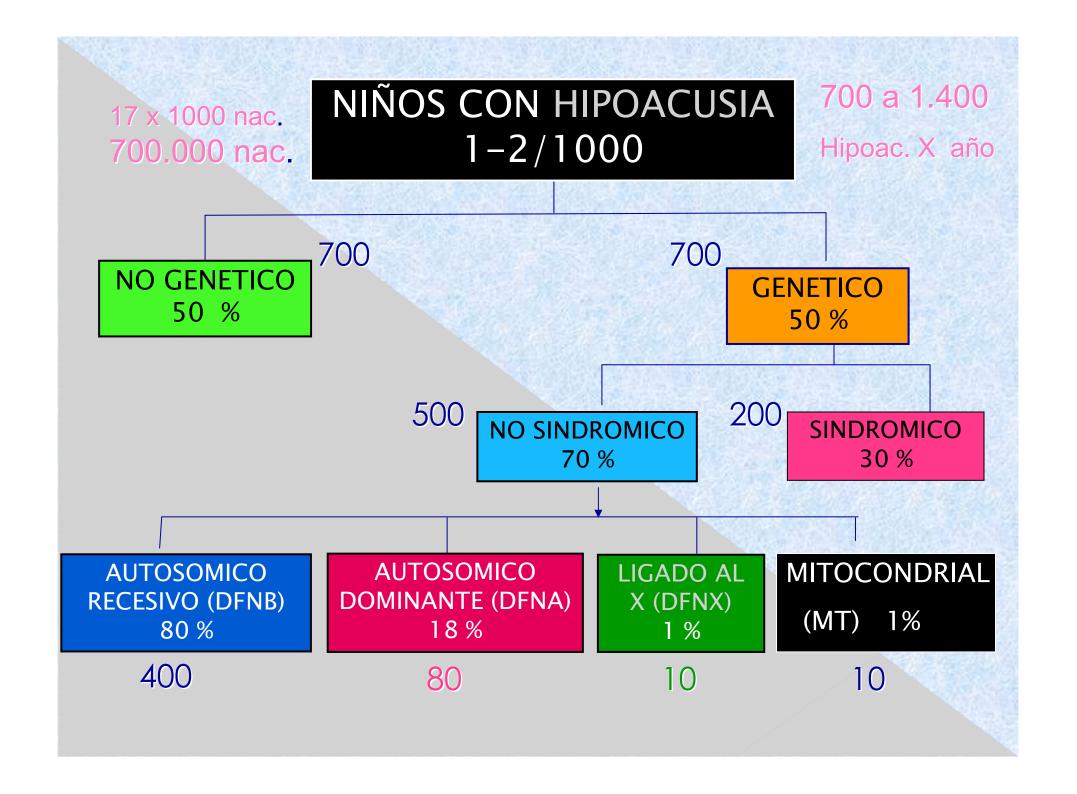


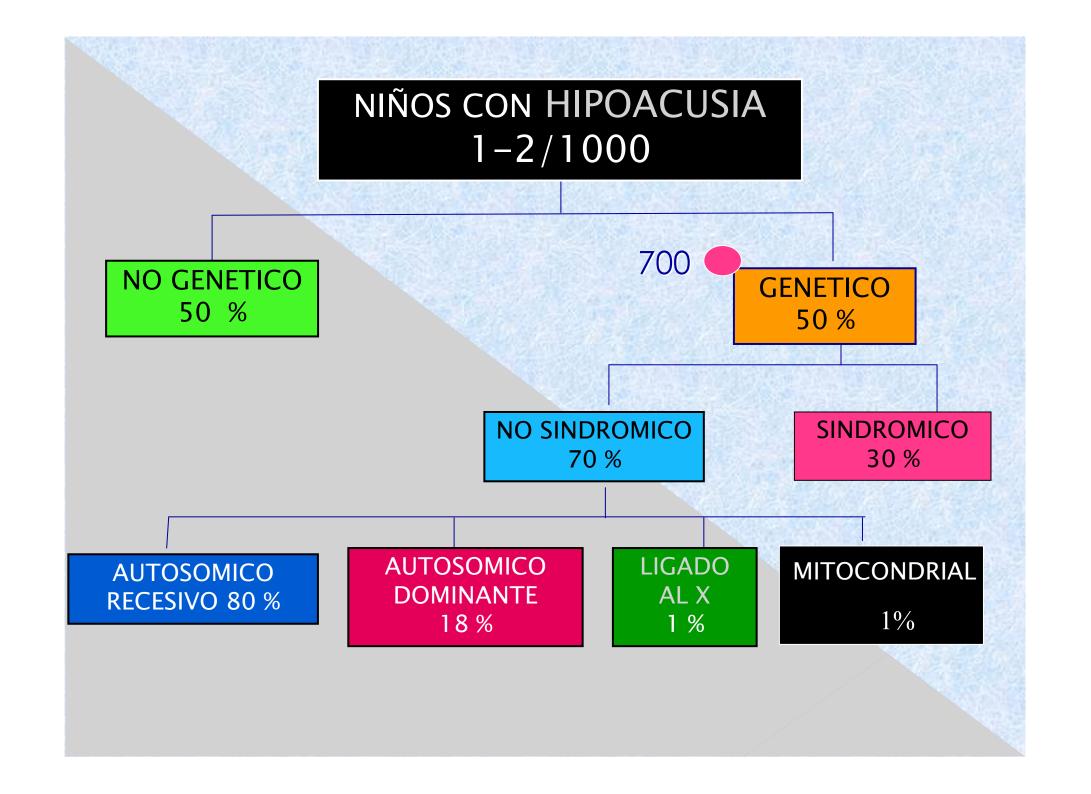
Genética e Hipoacusias Infantiles

Dr. Daniel Orfila
Otología - Neurotología
C.A.B.A - Argentina

Fga. Silvia Mastroianni

HIPOACUSIA - GENERALIDADES

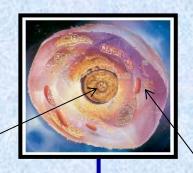

 La HSN es el trastorno sensorial más frecuente

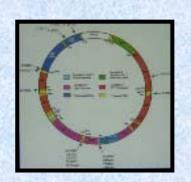

 Ley 25.415 a través del programa de Detección Temprana y atención de la hipoacusia, promueve el estudio y habilitación auditiva

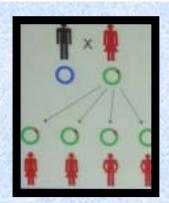
Es insuficiente para la evaluación genética

CEIDHI (1998 – 2010) – Dra. Fga E. Fernandez Screening neonatal universal Ley 25.415 - n:30.000 bebés

- 88% Universalidad lograda en Hospitales Públicos
- 90% pasaron el tamizado inicial
- 98% pasaron el 2º chequeo al més de vida
- 5% falsos positivos
- 3/1.000 Incidencia de hipoacusia neonatal
- 1/1.000 Inc. hipoacusia PROFUNDA
- 2/1.000 Inc. hipoacusia MODER./SEVERA

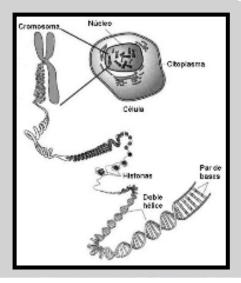



HIPOACUSIAS INFANTILES - EVALUACIÓN


- Tipo de hipoacusia (HC-HM-HSN) (Sind.- No sind.)
- Prelocutiva Perilocutiva Postlocutiva
- Interrogatorio / historia clínica
- Observación completa del niño / padres
- Evaluación audiológica
- S-To-R-C-He-S
- Piel
- Fondo de ojo
- Tiroides
- ECG
- Examen de orina
- T.C.A.R.
- R.M.I. T2 alta resolución
- Genetista (diagnóstico molecular)

Cx 26 - 30
Otoferlina
Pejvakina
Tecta
Pendrina
Eya 1
Eya 4
MT - RNR1

A.D.N.



NUCLEAR

25.000 genes

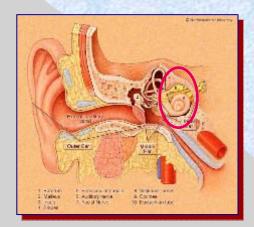
80 para O.I.

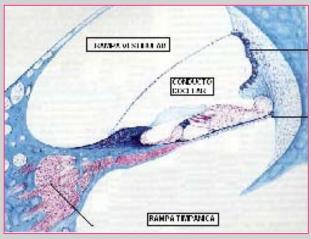
DFN B – DFN A – lig X

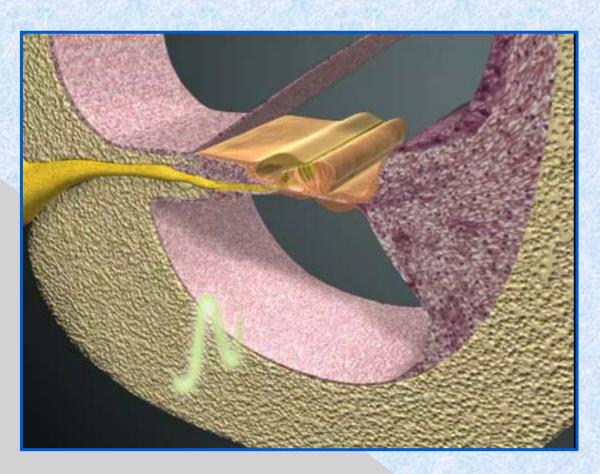
MITOCONDRIAL

37 genes

5 para O.I.

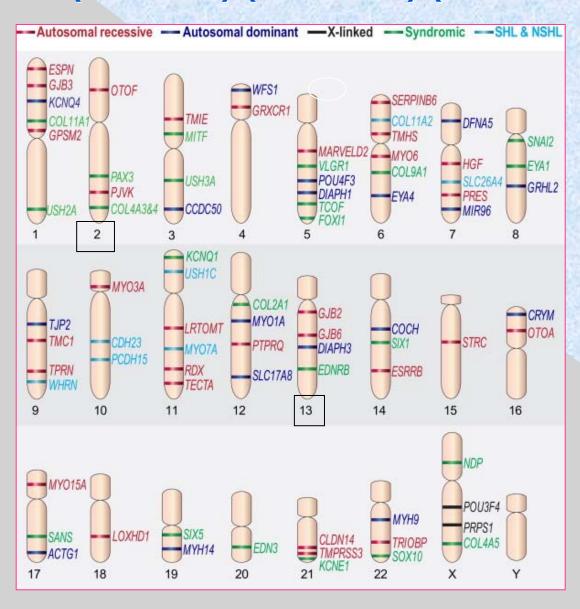

Similar al bacteriano

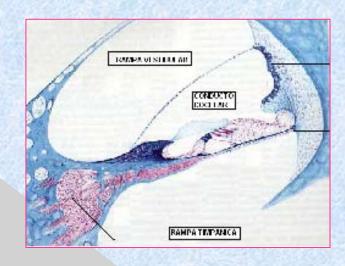

No se recombina


Cambia cada 10.000 años

No sirve para identificación

ORGANO DE CORTI





Múltiples genes

Codifican proteínas de la citoarquitectura, miosina, matriz extracel. canales de calcio, uniones intercelulares, factores de transcripción y otras a dilucidar.

HIP. GENÉTICAS No Sindrómicas (más 80 genes en total) (40 HSN AR) (30 HSN AD) (3 HSN al X) (Sindr. Genéticos)

HIPOACUSIAS GENÉTICAS "Trastorno muy heterogéneo"

Heterogeneidad Genética (Vs. Genes = síntoma)

oma)

Heterogeneidad Alélica (Misma mut. = enf.)

Penetrancia Incompleta (HSN en Wdbg)

Expresividad
Variable
(Distinta severidad clínica)

Dificultosa relación entre genotipo y fenotipo (manifestaciones clínicas y audiológicas)

Heterogeneidad genética

Mutaciones de genes diferentes, pueden producir
 la misma alteración (HSN recesiva no sind. Prelocutiva)

```
# GJB2
# GJB6
# OTOF
# TECTA
```

Heterogeneidad alélica

Igual mutación puede dar orígen a diferentes enfermadades

• GJB2 (35 del G, en el cromosoma 13)

HSN prelocutiva AR, no sindrómica (DFNB1A)

HSN postlocutiva AD, no sindrómica (DFNA3)

Sme. Con HSN más manifestaciones de piel vasculares o tiroideas

Penetrancia incompleta

 Sólo un porcentaje de los seres portadores del gen alterado, manifiestan la enfermedad (Ej. HSN)

Sme de Waardenburg HSN sólo en el 60% de los portadores del de la mutación del gen PAX3

Expresividad variable

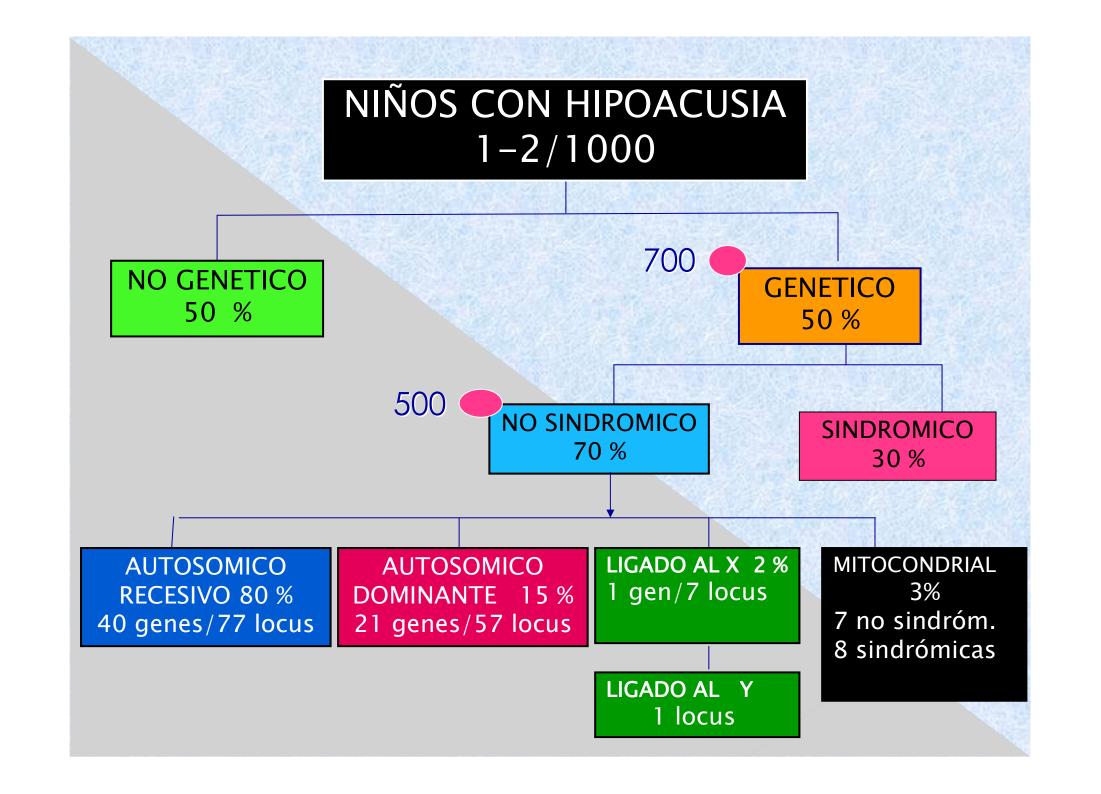
 La severidad de las manifestaciones clínicas difiere entre individuos portadores de la misma mutación

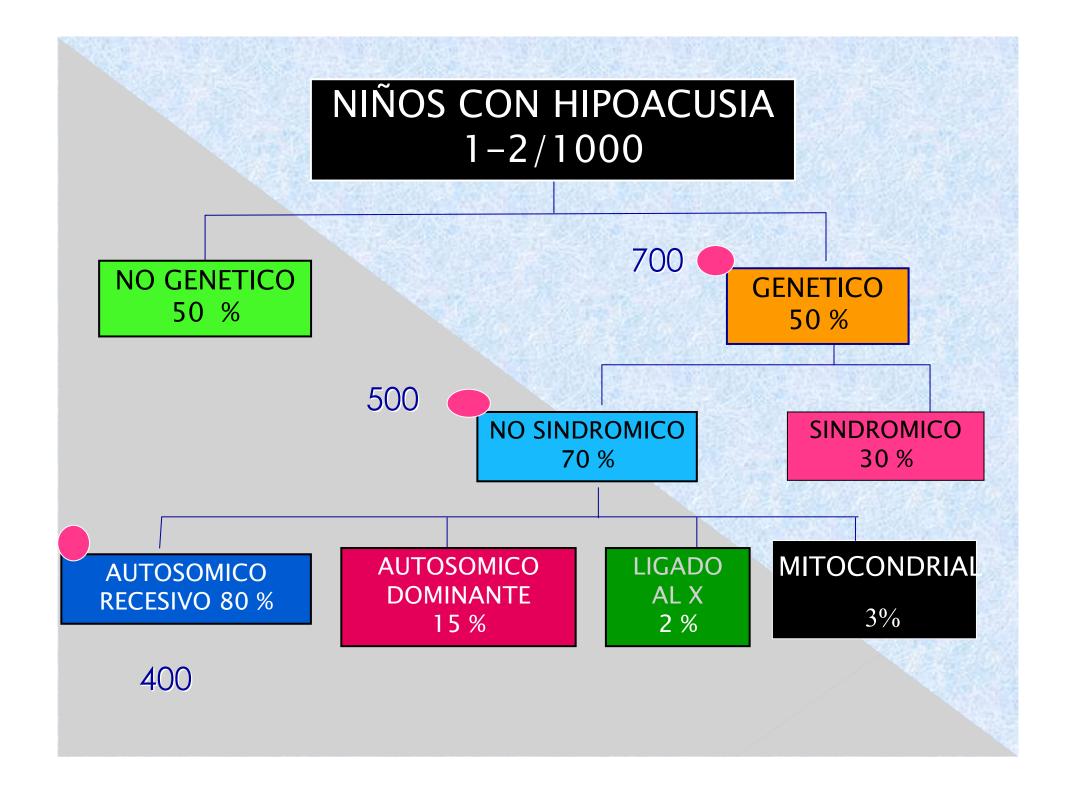
```
Sme de Wolfram
```

Alteración del gen WFS1:

DI DM OA D

HSN postlocutiva moderada


Estudio genético


- Conocer los genes y sus mutaciones más frecuentes de la etnia o población estudiada.
- Caucásicos descendientes de españoles en la HSNNoSind.
 predominan las mutaciones de los genes
 GJB2, GJB6, OTOF, MTRNR1
- En ARGENTINA ??????????

AGRADECIMIENTOS!!!!

- Prof. Carlos Curet (Córdoba)
- Dra. Viviana Dalamon (Conicet)
- Dr. Pablo Gravina (Hosp. Garrahan)
- Dra. Jennifer Garrido (Hosp. Garrahan)
- Dra. Vanesa Loterstein (C.A.B.A.)
- Dra. Susana Pavón (Mendoza)
- Lic. Fga María E. Prieto (Hosp. Garrahan)

Herencia autosómica recesiva

HIPOAC. GENÉTICAS no Sind. (más 80 genes en total)

DFNB (40 HSN AR) (30 HSN AD) (3 HSN al X) (Mitocondrial)

Tabla 1	Genes implicados en hipoacusias genéticas no sindrómicas de	herencia autosómica recesiva
---------	---	------------------------------

Locus	Gen	Proteína	Locus	Gen	Proteína
DFNB1A	GJB2	Conexina 26 ⁸	DFNB29	CLDN14	Claudina 14
DFNB1B	GJB6	Conexina 30°	DFNB30	МҮӨЗА	Miosina IIIA
DFNB2	MYO7A	Miosina VIIA ^a	DFN831	WHRN	■ Whirlina³
DFNB3	MYO15A	Miosina XVA	DFNB35	ESRRB	ESRRB
DFNB4	SLC26A4	Pendrina ^a	DFNB36	ESPN	ESPN
DFNB6	TMIE	TMIE	DFNB37	MYO6	■ Miosina VI ^a
DENB7/DENB11	TMC1	TMC1	DFNB39	HGF	Factor de crecimiento hepatocitico
DFN88/OFNB10	TMPRSS3	TMPRS\$3	DFNB49	MARVELD2	MARVELD2
DFNB9	OTOF	Otofertina	DFNB53	COL11A2	Colágeno XI, α2°
DFNB12	CDH23	Cadherina 23ª	DFN859	PJYK	Pejvakina
DFNB16	STRC	Estereocitina	DFNB61	SLC26A5	Prestina
DFNB18	USH1C	Harmonina ^a	DFNB63	LRTOMT	LRTOMT
DFNB21	TECTA	α-Tectorina	DFNB66/67	LHFPL5	LHFPL5
DFNB22	OTOA	Otoancorina	DNFB77	LOXHD1	LOXHD1
DFNB23	PCDH15	Protocadherina 15ª	DFNB79	TPRN	Taperina
DFNB24	RDX	Radixina	DFNB82	GP5M2	GPSM2
DFNB25	GRXCR1	GRXCR1	DFN884	PTPRQ	PTPRQ
DFNB28	TRIOBP	TRIOBP		GJB3	Conexina 31 st

⁴ Estos genes pueden ocasionar también una hipoacusia sindrómica.

HIPOACUSIAS GENÉTICAS (más 80 genes en total) DFNB (40 HSN AR)

Locus	GEN	Localización	Expresión Clínica
DFNB1A	GJB2	13q12	Prelingual frecuentemente estable Moderada a profunda
DFNB1B	GJB6	13q12	Prelingual frecuentemente estable Moderada a profunda
DFNB2	MYO7A	11q13.5	Frecuentemente Prelingual
DFNB3	MYO15A	17p11.2	Prelingual frecuentemente estable
		-	Severa a profunda

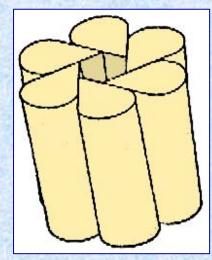
Locus	GEN	Localización	Expresión Clínica
DFNB4	SLC26A4	7q31	variable
DFNB6	TMIE	3p14-p21	Prelingual
			Severa a profunda
DFNB7/11	TMC1	9q13-q21	Prelingual Severa a profunda
DFNB8/10	TMPRSS3	21q22	variable
DFNB9	OTOF	2p22-p23	Prelingual Severa a profunda
DFNB12	CDH23	10q21-q22	Prelingual Severa a profunda
DFNB15 /72/95	GIPC3	19p13	Prelingual Severa a profunda
DFNB16	STRC	15q21-q22	Prelingual Severa a profunda
DFNB18	USH1C	11p14-15.1	Prelingual Severa a profunda
DFNB21	TECTA	11q	Prelingual Severa a profunda
DFNB22	OTOA	16p12.2	Prelingual Severa a profunda
DFNB23	PCDH15	10p11.2-q21	Prelingual Severa a profunda
DFNB24	RDX	11g23	Prelingual Severa a profunda
DFNB25	GRXCR1	4p13	Prelingual Progresiva Moderada a Profunda
DFNB28	TRIOBP	22q13	Prelingual Severa a profunda
DFNB29	CLDN14	21q22	Prelingual Severa a profunda
DFNB30	MYO3A	10p11.1	Prelingual Severa a profunda

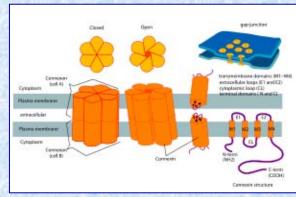
HIPOACUSIAS GENÉTICAS (más 80 genes en total) DFNB (40 HSN AR)

Locus	GEN	Localización	Expresión Clínica
DFNB31	WHRN	9q32-q34	Prelingual Profunda
DFNB32 / 82	GPSM2	1p13.3-22.1	Prelingual Severa a profunda
DFNB35	ESRRB	14q24,1-24.3	Prelingual
DFNB36	ESPN	1p36.3	Prelingual
DFNB37	MYO6	6q13	Prelingual
DFNB39	HGF	7q21.1	Prelingual Severa a profunda
DFNB42	ILDR1	3q13.31-q22.3	Prelingual Moderada a profunda
DFNB49	MARVELD2	5q12.3-q14.1.	Prelingual Profunda
DFNB53	COL11A2	6p21.3	Prelingual Severa a profunda
DFNB59	PJVK	2q31,1-q31.3	Prelingual Severa a profunda
DFNB61	SLC26A5	7q22.1	Prelingual Severa a profunda
DFNB63	LRTOMT/COMT2	11q13.2-q13.4	Prelingual Severa a profunda
DFNB66 /67	LHFPL5	6p21.2-22.3	Prelingual Severa a profunda
DFNB73	BSND	1p32.3	Prelingual Severa a profunda
DFNB74	MSRB3	12q14.2-q15	Prelingual Profunda
DFNB77	LOXHD1	18q12-q21	Postlingual Progresiva Moderada a sever
DFNB79	TPRN	9q34.3	Prelingual progresiva Moderada a profu
DFNB84	PTPRQ	12q21.2	Prelingual progresiva Moderada a profu
DFNB91	SERPINB6	6p25	Postlingual Progresiva Moderada a Profu

Evaluación genética España / Argentina (n = 200)

1º Conexina 26 ---35G/35G (80% Canarias)


2º Conexina 30


3º Conexina 26 Heterocigosis

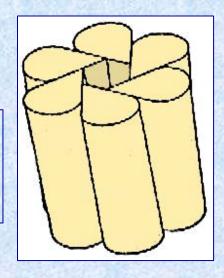
• 4° Gen OTOF / MTRNR1

CONEXINAS

- Proteínas responsables de la formación de los canales intercelulares
- Son las uniones tipo hendidura o gap junctions.
- Cada canal compuesto por 2 hemicanales o conexones
- Transporte de iones y metabolitos entre células adyacentes
- Homeostasis iónica y metabólica

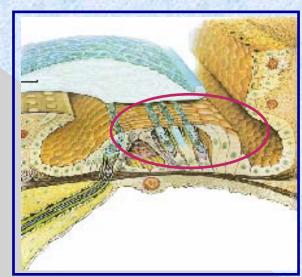
CONEXINAS

(intercambio de K y electrolitos en la cóclea)


4 tipos de conexina en el oído interno:

GJB2 Conexina 26
GJB6 Conexina 30

- GJB3- Conexina 31


GJA1 — Conexina 43

30 - 45% HSNNS AR locus DFN B1

● HSN por alteración del reciclado del K
 Endolinfa → CC → Csostén → Estr. Vasc.

 Aumento de K a nivel extracelular, con intoxicación del órgano de Corti

CONEXINA 26 y 30 Características de la HSN (1^a)

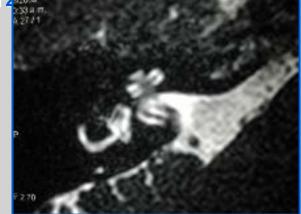
Generalmente no pasan el tamizaje auditivo neonatal

HSN de moderada a profunda prelocutivas

La literatura habla de cierta estabilidad en la HSN

Hosp Garrahan : a 9 años un grupo progresó rapido

GJB2 y GJB6 son el 38% de las HSN neonatales no Sind.


CONEXINA 26 y 30 Características de la HSN (2^a)

- Sigue siendo alto el % de mutaciones no diagnosticadas
- Si las 2 mutaciones son identificadas, confirma locus DFNB1
- Si la segunda mutación NO es identificada :
 - -- HSN por otra patología + portador del gen mutado
 - -- HSN por otras mutaciones en DFNB1 o en otro gen
- Muy buenos candidatos para el I.C.

Gen GJB2 (CONEXINA 26) Cromosoma 13q11-12

- Más de 100 mutaciones diferentes de éste Gen (AR 60% AD Sind)
- 1^a causa de HSN no Sind. bilateral prelocutiva AR (30 45%)
- Deleción de la G 35 del gen GJB2: son el 50 al 80% de las mutaciones del gen en caucásicos mediterráneos
- La 2ª mutación del gen es la deleción de T (c.167 del T), judíos ASKZ.
- Se produce una proteína no funcional de sólo 12.44 (226)
- 0% casos unilaterales
- 2-5% de portadores sanos

T.C. NORMAI

CONEXINA 26

HSN prelocutiva de moderada a profunda Penetrancia incompleta y expresividad variable

HOMOCIGOSIS 97%

HSN no Sind. AR (DFNB 1A)
 # 35 G / 35 G: Mut. TRUNC / TRUNC
 HNS severa/ prof. Europeos y desc.

167 T / 167 T: judios ashkenazis

235 C / 235 C: asiáticos

- HSN no Sind. AD (DFNA 3A)
- HSN Sindrómica:
 con pimentación en piel
 con queratodermia mutilante
 (sind. Vohwinkel)

HETEROCIGOSIS 3%

- 35 G / otra deleción
 Mutación no truncante
- La 2da mutación es la que da la severidad
- HSN menos severa
- 60% HSN severa/profunda
- 2 mutaciones diferentes al 35 del G da hip. leve

Gen GJB6 (CONEXINA 30) Cr. 13 Homocigocis > Heterocigosis

- Hay 2 mut. reportadas a nivel mundial:
 # Deleción 309 Kb (GJB6-D13S1830) es la 2a. en España
 # Deleción 232Kb (GJB6-D13S1854) es la 4a. en España
- HSN no sind. AR (DFNB 1B)
 HSN profunda pero estable en el tiempo
- HSN no sind. AD (DFNA 3B)
- HSN sindrómica: Sme.de Clouston con displasia hidrópica ectodérmica pestañas y cejas ralas, ausencia de sudor

HNS Moderada/Profunda PRELINGUAL Bilateral Prieto, Gravina, Garrido 2010 / Hosp. Garraham N: 104 pacientes

- 62% sin mutaciones para conexinas
- 32% con 2 mutaciones de conexinas
- 4% con 1 sola mutación para conexinas

```
    36% de mutaciones para Cx. (39%- 2012)
    1° 35 del G / 35 del G (60%)
    2ª Cx 30 GJB6 D13 S1830 (10%)
    3ª R 143 W (6%)
```

HSN Moderada/Profunda PRELINGUAL Bilat. Prieto, Gravina, Garrido 2012 – n= 113 ptes.

- Cx 26 es la más prevalente, HSN más variable y prograsiva (> controles)
- Cx 30 : HSN más profunda pero estable
- Portadores de la mutación 35G......1/65
- Homocigotas 35G/35G.....1/16.900
- Para 700.000 nacimientos.....40 bebés HSN
- Alguna mutación GJB2-GJB6...... 110 bebés
- Rápido progreso con I.C.

Prevalencia de portadores de la mutación 35 del G en la población general

• Italia

1/32

Francia

1/37

España

1/40

Argentina

1 / 65

Brazil

1 / 103

Cx 26 / 30 400 pacientes estudiados – USA Heterogeneided alélica y fenotípica

O Audición normal : 3 %

• HNS para fc. agudas: 5 %

• HNS moderada:
13 %

• HNS severa:

• HNS profunda:

25 %

50 %

75%

Investigación genética del CONICET Dra Viviana Dalamón

n = 424 pacientes - 2010

- 63% sin determinar
- 21% otras mutaciones
- 12% Conex. 26 35 del G
- 1.8% Conex. 26 167 del T
- 1.3% Conex. 30 13S 1830
- 0.7% Conex. 30 13S 1854

16 %

Gen GJB 3 – Cromosoma 1p (Conexina 31) Homocigosis o heterocigosis (GJB2 y GJB3)

- HSN no sindr. AR
- HSN no sindr. AD
- HSN sindrómica, con manifestaciones neurológicas y en piel

N.A. D.N. DENA Trastorno muy heterogéneo

- Afecta tanto a niños como a los adultos
- Sin lesiones tumorales del VIII par

- Puede asociarse a otros trastornos neuropáticos no auditivos
- De etiología variada y comportamiento impredecible
- Con normal funcionamiento de CCE y anormal funcionamiento del VIII par y la vía auditiva
- La alteración podría hallarse a nivel de CCI, sinápsis con VIII par, el VIII par en sí mismo o en tronco encefálico

N.A. - D.A. D.E.N.A.

"trastorno muy heterogéneo "(2)

- Por distintos / sitio de lesión / noxas / hipoacusias / respuestas conductuales y electrofisiológicas / comorbilidades centrales y periféricas / y resultados
- Formas clínicas muy diversas
- Las permanentes son las más frecuentes
- Las transitorias pueden recuperarse total o parcial en el 1º año de vida
- No apresurarse para "etiquetar un diagnóstico"
- Derivar para estimulación auditiva temprana

N.A.- D.N. – D.E.N.A. Cuadro clínico (1)

- Fluctuación de umbrales
- Padres reportan que oye:
 - Sonidos ambientales
 - Se despiertan con la voz familiar
- Poco beneficio con OTA
- Poco cambio si el OTA está "ON o OFF"
- Escaso y lento desarrollo del lenguaje

N.A.- D.N. – D.E.N.A. Cuadro clínico (2)

- Los umbrales varían desde la normalidad a la hipoac. profunda
- Generalmente bilateral y simétrica (casos asimétricos)
- Dificultad para discriminar en lugares ruidosos
- Algunos no presentan dificultad para la comunicación otros funcionan como "sordos"
- Formás clínicas transitorias, y permanentes según la etiología
- Las genéticas dan HSN severa / profunda temprana !!!!!!!

A.N.S.D. / N.A. / D.A. Evaluación audiológica

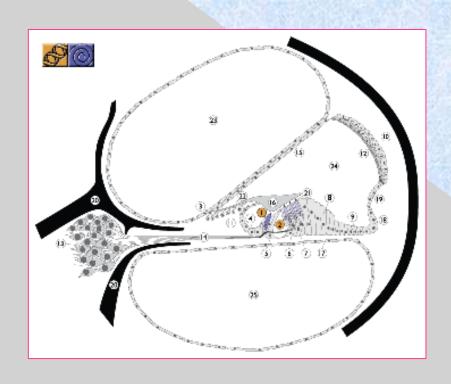
- H.S.N. de diverso grado (bilat. Simétrico / asim. / unilateral)
- Pobre reconocimiento del habla
- O.E.A ++
- O.E.A. con supresion contralateral —— Sin cambios (Hood 2003)
- M.C. ++
- POM normal y reflejos acústicos contralateral NEG. o elevado
- Anormalidad o ausencia de respuesta en el P.E.A.T.

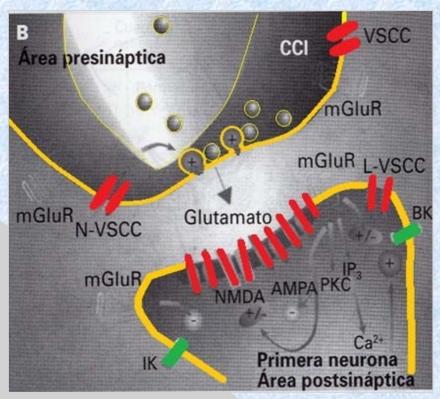
N.A - CAUSAS

ADQUIRIDAS

- Prematurez
- OUTING
- Bajo peso
- ARM
- Ototóxicos
- O Ictericia

GENÉTICAS

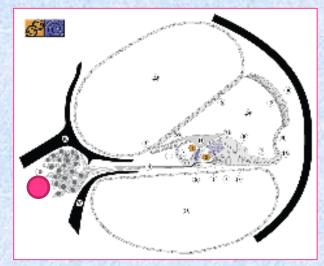

Gen OTOFDFNB 9 / 2 p22-p23


Mutación c.2485G>A p.Q 829 X en el exón 22

Gen PEJVAKINA

N.A. - D.N. - D.E.N.A.

Gen OTOF (Otoferlina) DFNB 9 / Q829X (glut) / 2p 22-23



Gen OTOF: codifica a la proteina localizada en las CCI que se une al Ca++. Rol en la exocitosis de las vesículas sinápticas hacia las sinapsis.

HSN Profunda bilateral prelingual

N.A. / D.N./D.E.N.A.

Gen OTOF (Otoferlina) Prof. Carlos Curet (Argentina)

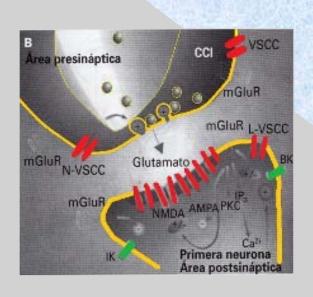
Mutación (Q) Gln829 X – DFNB 9 /// HSN bilateral prelingual

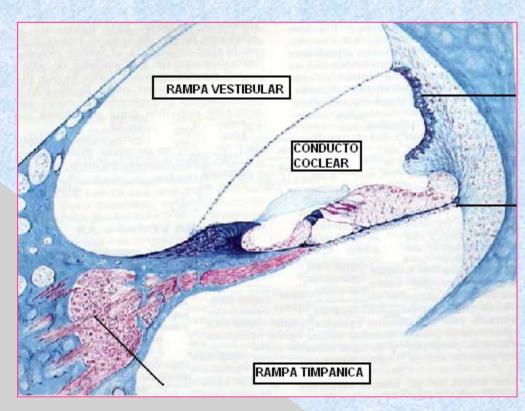
40 ptes. 100% Prelingual -- HSN Moderada 15%

HSN Severa 8%

HSN Profunda 77%

Resultados: 8 / 40 (20%) mutación del gen OTOF

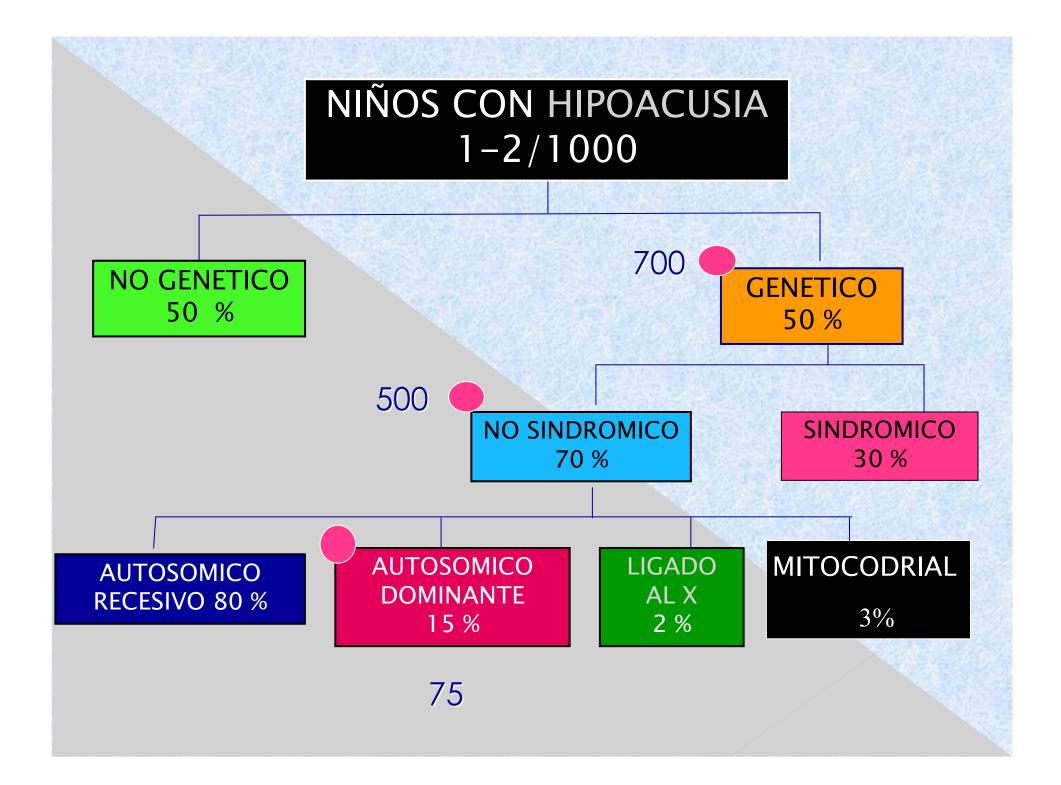

6 Heterocigotas --- 2 Homocigotas


3/8 (37%) se halló 2 nuevas mutaciones autóctonas

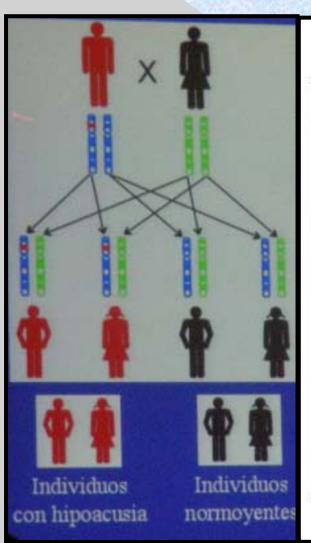
alelo mutante el c.4227+1G>T

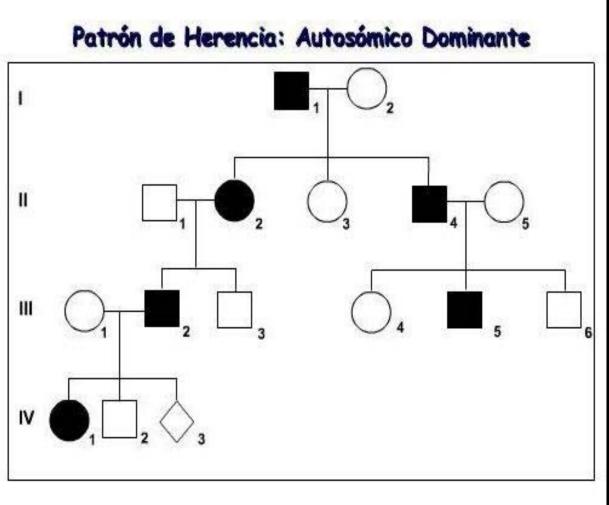
y el c.2905_2923delinsCTCCGAGCGCA

N.A. – D.N – D.E.N.A. Gen de la Pejvakina (postsináptico)



DFNB 59


Mutación del gen de la PEJVAKINA


Cromosoma 2 q31.1-31.3

Se destruye proteina en ganglio espiral y nervio coclear

Autosómico dominante

Autosómico dominantes - DFNA

30 genes – más de 60 locus

Las DFNA son generalmente postlocutivas

Y progresivas (3^a / 4^a década)

 Pero si son en heterocigosis pueden dar HSN temprana

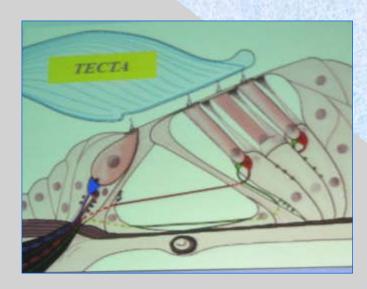
HIPOACUSIAS GENÉTICAS (más 80 genes en total)

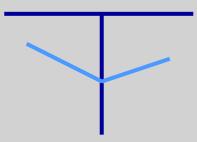
(40 HSN AR) (30 HSN AD) (2 HSN al X) (ADN mitocondrial)

Tabla 2 Genes implicados en hipoacusias genéticas no sindrómicas de herencia autosómica dominante

Herencia autosómica dominante					
Locus	Gen	Proteina	Locus	Gen	Proteína
DFNA1	DIAPH1	DIAPH1	DFNA13	COL11A2	Colágeno XI, α2ª 🛑
DFNA2A	KCNQ4	KCNQ4	DFNA15	POU4F3	POU4F3
DFNA2B	GJ83 (Conexina 31*	DFNA17	мүн9	MYH9³
DFNA3A	GJ82	Conexina 26°	DFNA20/26	ACTG1	y1-Actina
DFNA3B	GJ86	● Conexina 30ª	DFNA22	MY06	Miosina VI ^a
DFNA4	MYH14	MYH14	DFNAŽ8	GRHL2	GRHL2
DFNA5	DFNA5	DFNA5	OFNA36	TMC1	TMC1
DFNA6/DFNA14/DFNA38	WFS1	Wolframing ^a 🛑	DFNA44	CCDC50	CCDC50
DFNA8/DFNA12	TECTA	α-Tectorina	DFNA48	MYOTA	Mlosina IA
DFNA9	COCH	Coclina	DFNA50	MIRN96	Micro-RNA 96
DFNA10	EYA4	EYA4ª 🛑	DFNA51	TJP2	Proteína de uniones estrechas 2
DFNA11	MYO7A	Miosina VIIAº 🛑		CRYM	μ-Cristalina

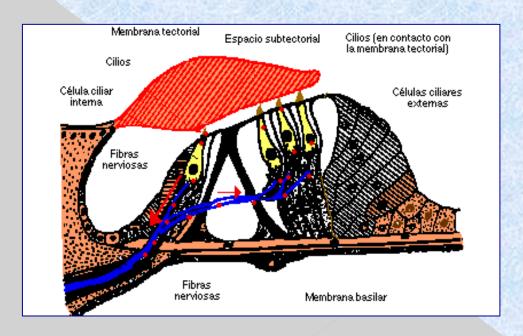
 ^{*} Estos genes pueden ocasionar también una hipoacusia sindrómica.


HIPOACUSIAS GENÉTICAS (más 80 genes en total) DFNA (30 HSN AD)


LOCUS	GEN	Localizacion	Expresion Clinica
	CRYM	16p12.2	Postlingual progresiva
DFNA1	DIAPH1	5q31.3	Postlingual Progresiva Afectación de bajas frecuencias
DFNA2A	KCNQ4	1p34.2	Postlingual Progresiva Afectación de altas frecuencias
DFNA2B	GJB3	1p34.3	Postlingual Progresiva Afectación de altas frecuencias
DFNA3A	GJB2	13q12.11	Prelingual Progresiva Afectación de altas frecuencias
DFNA3B	GJB6	13q12.11	Prelingual Progresiva Afectación de altas frecuencias
DFNA4	MYH14	19q13.33	Postlingual Progresiva
DFNA5	DFNA5	7p15.3	Prelingual Progresiva Primero afecta las altas frecuencias

HIPOACUSIAS GENÉTICAS (más 80 genes en total) DFNA (30 HSN AD)

LOCUS	GEN	Localizacion	Expresion Clinica
DFNA6/14/38	WFS1	4p16.1	Postlingual Progresiva
			Afectación de bajas frecuencias
DFNA8/12	TECTA	11q23.3	Pre o postlingual. Progresiva o estable
		•	Afecta medias y altas frecuencias
DFNA9	COCH	1 4 q12	Prelingual Progresiva
			Afectación de altas frecuencias
DFNA10	EYA4	6q23.2	Postlingual Progresiva
DFNA11	MYO7A	11q13.5	Postlingual Progresiva
DFNA13	COL11A2	6p21.32	Prelingual No Progresiva
			Afectación de frecuencias medias
DFNA15	POU4F3	5q32	Postlingual Progresiva
DFNA17	MYH9	22q12.3	Postlingual Progresiva
			Altas frecuencias
DFNA20/26	ACTG1	17q25.3	Postlingual Progresiva
			Afectación de altas frecuencias
DFNA22	MYO6	6q14.1	Postlingual Progresiva
			Afectación de altas frecuencias
DFNA23	SIX1	14q23.1	Prelingual. No progresiva
			Afectación mayor de altas frecuencias
DFNA25	SLC17A8	12q23.1	Postlingual Progresiva
			Afectación de altas frecuencias
DFNA28	GRHL2	8q22.3	Postlingual Progresiva
DFNA36	TMC1	9q21.13	Postlingual Progresiva
DFNA44	CCDC50	3q28	Postlingual Progresiva
DFNA48	MYO1A	12q13.3	Postlingual Progresiva
DFNA50	MIRN96	7q32.2	Postlingual Progresiva
DFNA51	TJP2	9q21.11	Postlingual Progresiva
DFNA64	SMAC/DIABLO	12q24.31	Postlingual Progresiva

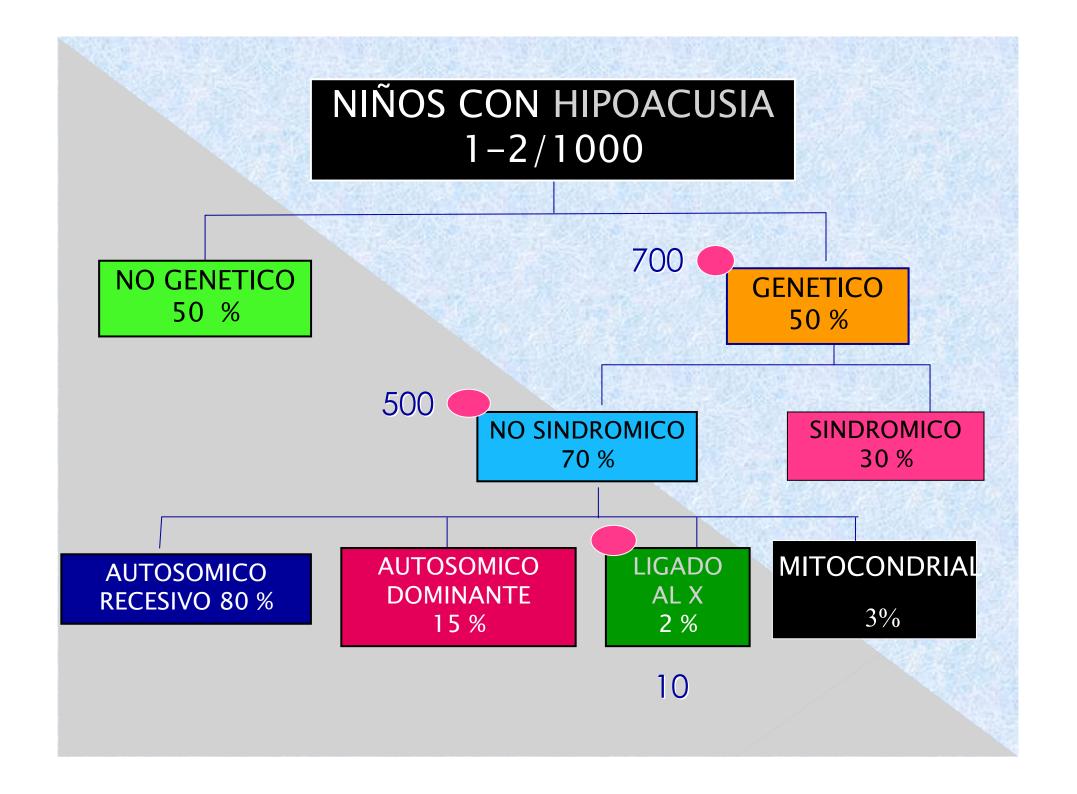

Gen TECTA – Cr.11q 22-q24 – codifica la tectorina son 23 exones (10-17-20) DFNA 8 – DFNA 12 – DFNB 21

HNS estable

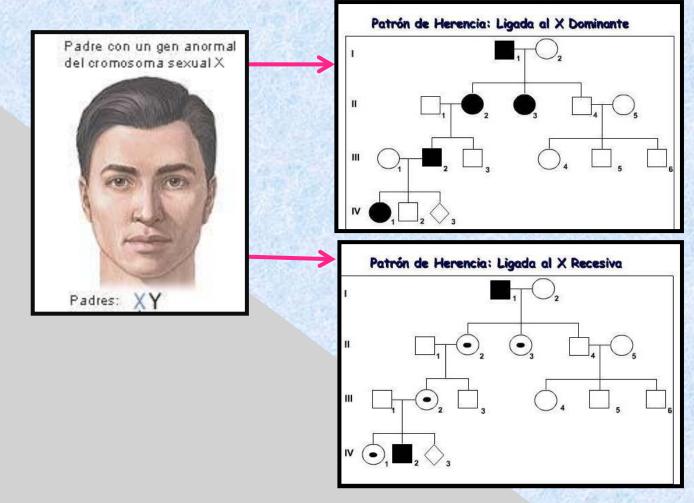
HNS progresiva

Gen COCH - Cr.14q - DFNA 9

- HSN no sind. AD
- Postlocutiva progresiva
- Caída en agudos
- Sme vertiginoso antecede a la HSN
- Investigarlo en Meniere familiar


Gen WFS 1 – Wolframina – Cromosoma 4p DFNA 6 – DFNA 14 – DFNA 38

- HSN no sind. AD tardía, para graves
- HSN no sind. Temprana prelocutiva
- Sind. De WOLFRAM (DI DM OA D)
 Ejemplo de heterogenicidad genética (lo puede dar tanto la mutación del gen WFS 1, como la del gen CISD 2.
 También presenta expresividad variable en el DI DM OA D.


Gen Eya 4 (6q 23,2) - DFNA 10

HSN no sind. AD tardía, PROGRESIVA

Se estudian exones 10 - 19 - 20
 (INGEBI – Dra. Dalamón)

Herencia ligada al X (XD – XR)

XD de madre afectada : c/ varón o mujer nacido --- 50% chances de enf.

XR de madre portadora: c/ varón nacido -----50% chances de enf.

HIPOACUSIAS GENÉTICAS (más 80 genes en total) (40 HSN AR) (30 HSN AD) (3 HSN al X) (ADN mitocondrial)

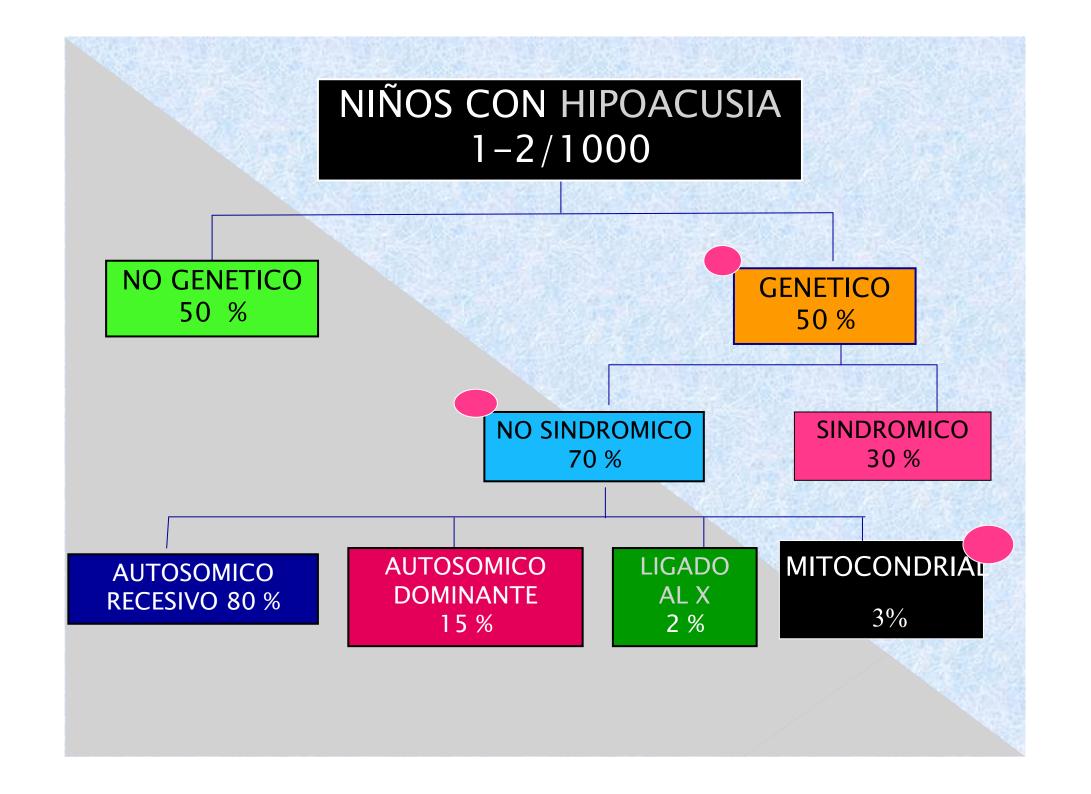
Locus	GEN	Localización	Expresión Clínica
DFN2	PRPS1	Xq22	Postlingual Progresiva Moderada a Profunda
DFN3	POU3F4	Xq21.1	Prelingual progresiva variable, evoluciona profunda
DFN6	SMPX	Хр22	Postlingual Progresiva

Hipoac. Ligadas al X

Hipoacusias ligadas al X DFN (DFN1 y DFN5 no se citan, y no se incluyen entre las hipoacusias no sindrómicas tras la reevaluación de los pacientes).

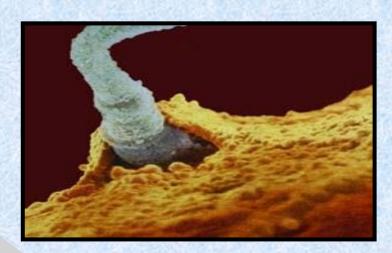
	Locus	Gen	Localización cromosómica	Edad de aparición	Patrón evolutivo
8	DFN2		Xq22	Prelocutiva	Estable
	DNFX3	POU3F4	Xq21.1	Prelocutiva	Hipoacusia mixta con gusher laberíntico en caso de platinotomía
	DFN4		Xp21	Prelocutiva	Todas las frecuencias
	DFN6		Xp22	Poslocutiva	Progresiva
					Frecuencias agudas

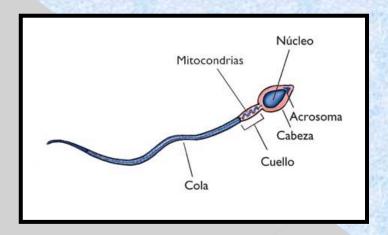
Varones –HSN - H.M.- H.C. – progresiva de inicio temprano


DD. Otoesclerosis – Fijación congénita estribo

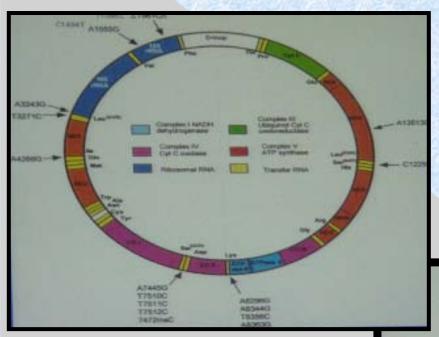
Imágenes: CAI dilatado, Modíolo ancho

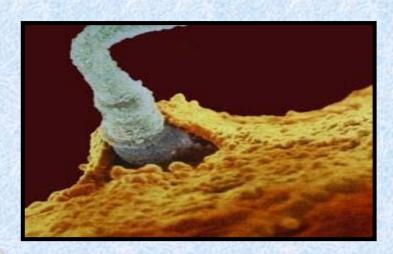
Acueducto coclear permeable

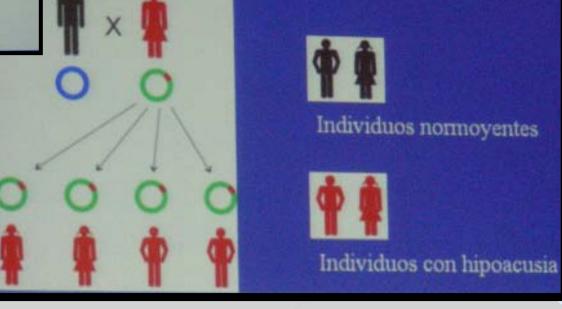




Fecundación - Mitocondrias maternas

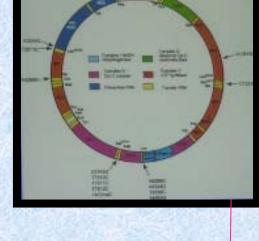






HERENCIA MITOCONDRIAL (MATERNA)

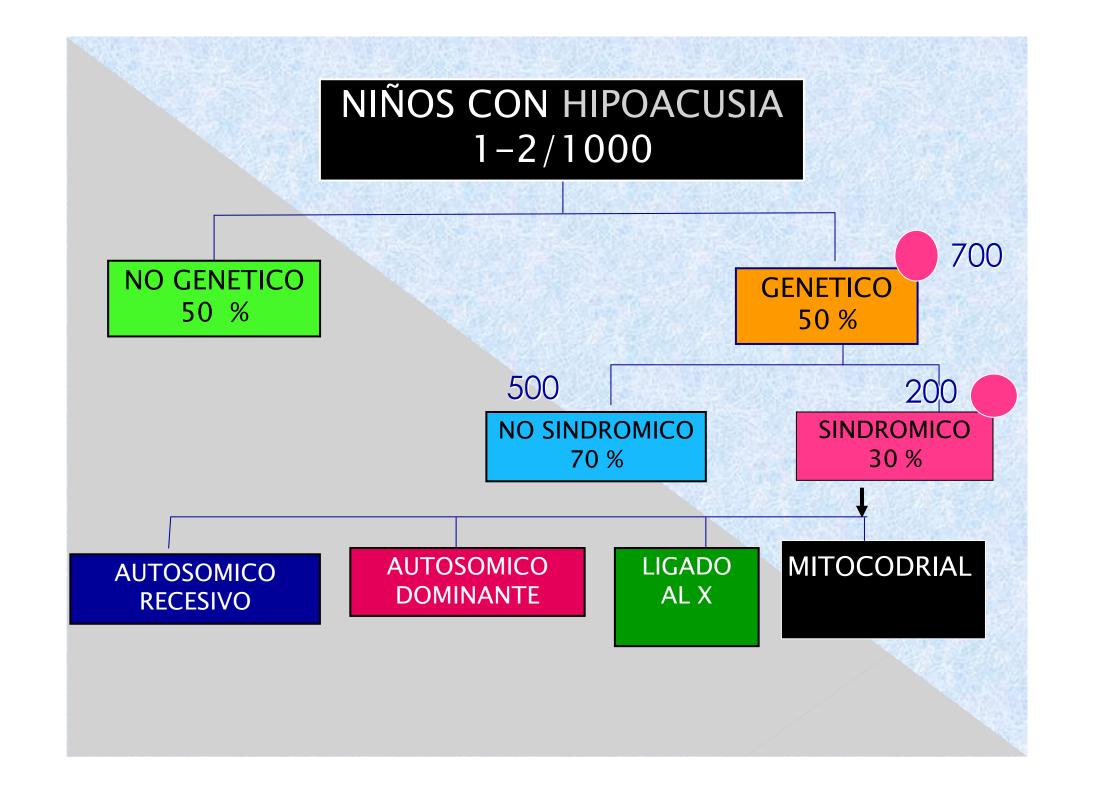
Expresividad variable (si enferma o no y cuánto)



MITOCONDRIAL – Línea materna

37 genes – 16.569 pares de bases

- Son Smes. complejos, con fenotipos muy variables con alteraciones neuromusculares (MERRF-MELAS-LHON)
- En el gen MT-RNR1 el ARN ribosomal 12s
 hay mutaciones: A 1555 G / C 1494 T
 # Lesión por Ototóxicos
 # HSN no Sind. postlocutiva (1ª en España postloc.)
- Otros genes: MTTS1-MTTL1-MTND1
 MTND4-MNTD5-MTND6-MTND4
- HNS con Diabetes T2 (MIDD)

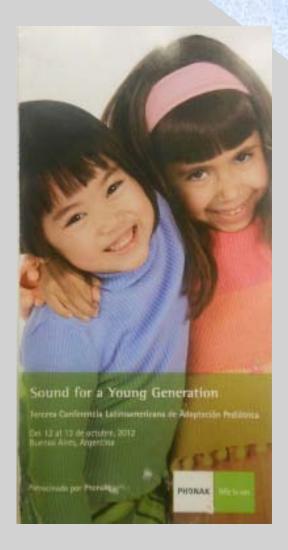


100% de la descendendia afectada

HIPOACUSIAS GENÉTICAS (más 80 genes en total) (40 HSN AR) (30 HSN AD) (3 HSN al X) (Mitocondrial)

Herencia mitocondrial		
Gen	Proteína	
MTRNR1	ARN ribosómico mitocondrial 125	
MTTS1	ARN de transferencia mitocondrial serina 1ª	

sindrómica.


HIPOACUSIAS INFANTILES - EVALUACIÓN

- Tipo de hipoacusia (HC-HM-HSN) (Sind.- No sind.)
- Prelocutiva Perilocutiva Postlocutiva
- Interrogatorio / historia clínica
- Observación completa del niño / padres
- Evaluación audiológica
- S-To-R-C-He-S
- Piel
- Fondo de ojo
- Tiroides
- ECG
- Examen de orina
- T.C.A.R.
- R.M.I. T2 alta resolución
- Genetista (diagnóstico molecular)

Cx 26 - 30
Otoferlina
Pejvakina
Tecta
Pendrina
Eya 1
Eya 4
MT - RNR1

Gracias por su atención !!!

Dr. Daniel Orfila
Otología - Neurotología
C.A.B.A - Argentina
dorfila@intramed.net

SINDROMES con

HSN – H Mixta - HC (más de 400)

ETIOLOGÍA GENÉTICA SINDRÓMICA

- Más de 400 síndromes con HIPOACUSIA
- Más de 100 genes
- Toda malformación obliga investigar una hipoacusia

Autosómico Rececivo

Autosómico Dominante

Ligados al sexo (X)

Mitocondrial

Multifactorial

Hipoacusia sindrómica (polimorfismo)

- Tiene otras anormalidades
- 2 síndromes pueden ser causados por diferentes mutaciones del mismo gen
- Mutaciones de más de un un gen pueden causar el mismo fenotipo clinico
- Las mutaciones en el mismo gen pueden causar afeccion auditiva sindromica y tambien no sindromica

Sindromes con HC-HM-HNS asociados a :

- Malformaciones craneofaciales
- Trastornos pigmentarios
- Alteración ocular
- Disfunción endócrino metabólica
- Cardiológica
- Renal
- Displasias musculoesqueléticas
- Alteración neurológica

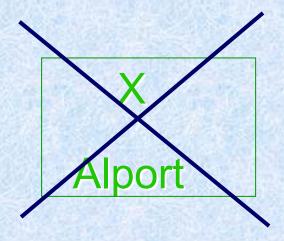
Síndromes con hipoacusia desde el NACIMIENTO

A.R.

Pendred Usher J & L.N.

A.D.

Waardenburg


B.O.R

T.C.F.

Stickler

Pierre Robín

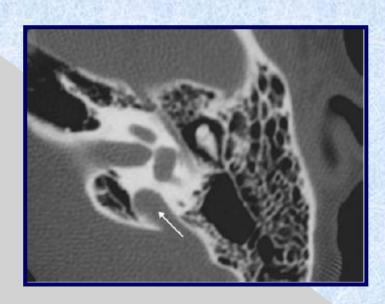
Crouzón

MULTIFACTORIAL Goldenhar Klippel Feil

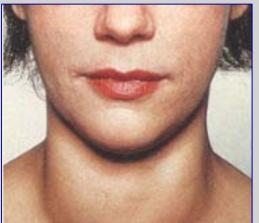
HIPOACUSIAS GENÉTICAS SINDRÓMICAS más frecuentes desde el NACIMIENTO

```
WAARDENBURG HP + trast. pigmentarios (70 x año)
```

```
USHER:
HP + Retinitis pigmentaria (30 x año)
```


```
PENDRED: HP + Bocio eutiroideo (50 x año)
```

> B.O.R.: HP + fístulas + riñón (20 x año)


JERVELL (JLN) HP + Síncopes (7 x año)

HNS profundas tempranas

ACUEDUCTO VESTIBULAR ENSANCHADO

Pendred

BOR

Sme de. WAARDENBURG 70 x año

- 2/40.000
- A.D. HNS muy variable (leva a profunda / unilateral o bilateral)
- Anomalías de pigmentación (mechón blanco, heterocromía del iris)
- 4 tipos identificados y 6 genes

Tipo I: distopía cantorum

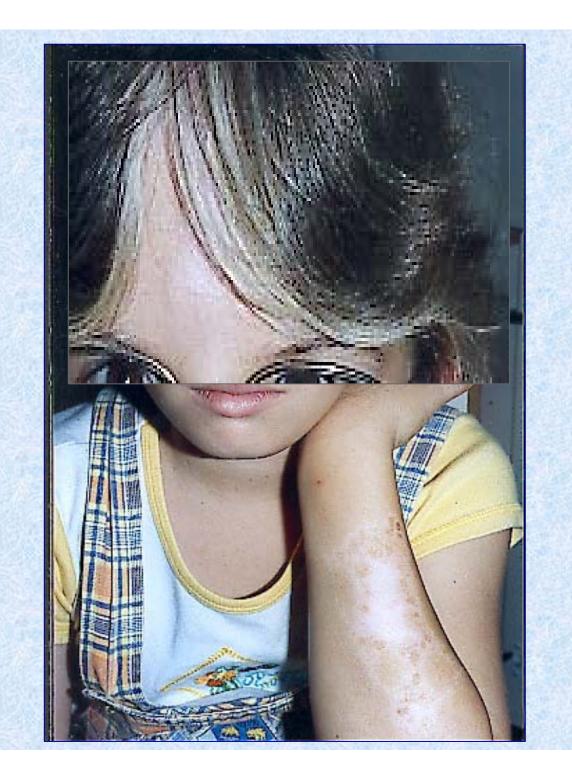
Tipo II: más frecuente, sin distopia

Tipo III: malformaciones de extremidades

Tipo IV: enfermedad de Hirschsprung

6 genes identificados

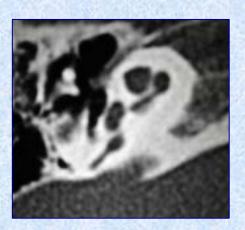
PAX 3 - MITF - SNA 12 -

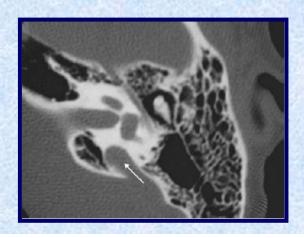

EDNRB - EDN 3 - SOX 10

● Sme de USHER - A.R. 30 X año

- 4 / 100.000 6-10 % de las HNS USA = 16.000 casos
- HNS profunda estable o progresiva prelocutiva
- Retinitis pigmentaria progresiva TARDÍA (2da dec)
- Disfunción Vestibular con retraso de la marcha
- Electroretinograma alterado
- 9 genes mutados: MYO7A USH1C CDH23
 PCDH15 SANS USH2A VLGR1 WHRN USH3

SINDROME DE USHER


- 3 subtipos basados en la severidad de la progresión de hipoacusia y afectación vestibular
 - Tipo 1.-H.N.S. congenita bilateral profunda .
 Ausencia de función vestibular.
 Retinitis pigmentaria en el 1ra. década de la vida
 - Tipo 2.- H.N.S. congénita moderada
 Función vestibular normal.
 Retinitis pigmentaria en el 1ra / 2da. década de la vida
 - Tipo 3.- H.N.S. congénita progresiva
 Función vestibular variable.
 Retinitis pigmentaria de comienzo variable

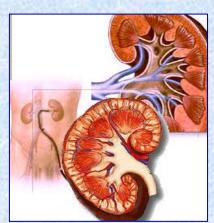

Sme de PENDRED – A.R.

50 X año

- HNS prelocutiva poco frecuente 6 / 100.000
- HNS bilateral severa a profunda estable o fluctuante,
 15% evolutivas
- Bocio en la pubertad o adultez. 50% de los bocios son eutiriodeos
- Displasia de Mondini o acueducto vestibular ensanchado
- Disfinción vestibular
- Mutación del gen SCL26A4 = PENDRINA (Crom. 7q 31) en 50%
- Ese gen también da HSN no sind. DFNB4
- Mutación del gen FOXI1 (menos fracuente)

BRANQUIO-OTO-RENAL (BOR) – A.D.

- 1/40.000 Expresividad muy variable

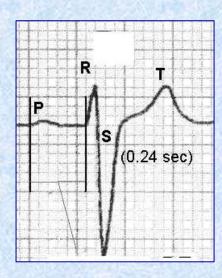

20 x año

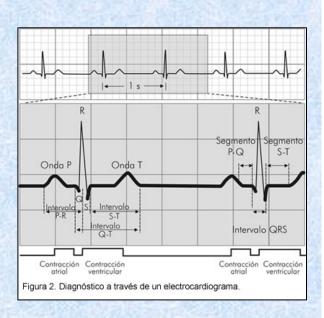
- HNS o mixta o conductiva
- Fístulas y quistes branquiales
- FLAP
- Malformaciones del pabellón
- Malf. Oído externo: aplasia, estenosis de CAE
- Malf. Oído medio
- Malf. O. interno
- Malformaciones renales
- 3 genes identificados

EYA1

SIX 5

SIX₁

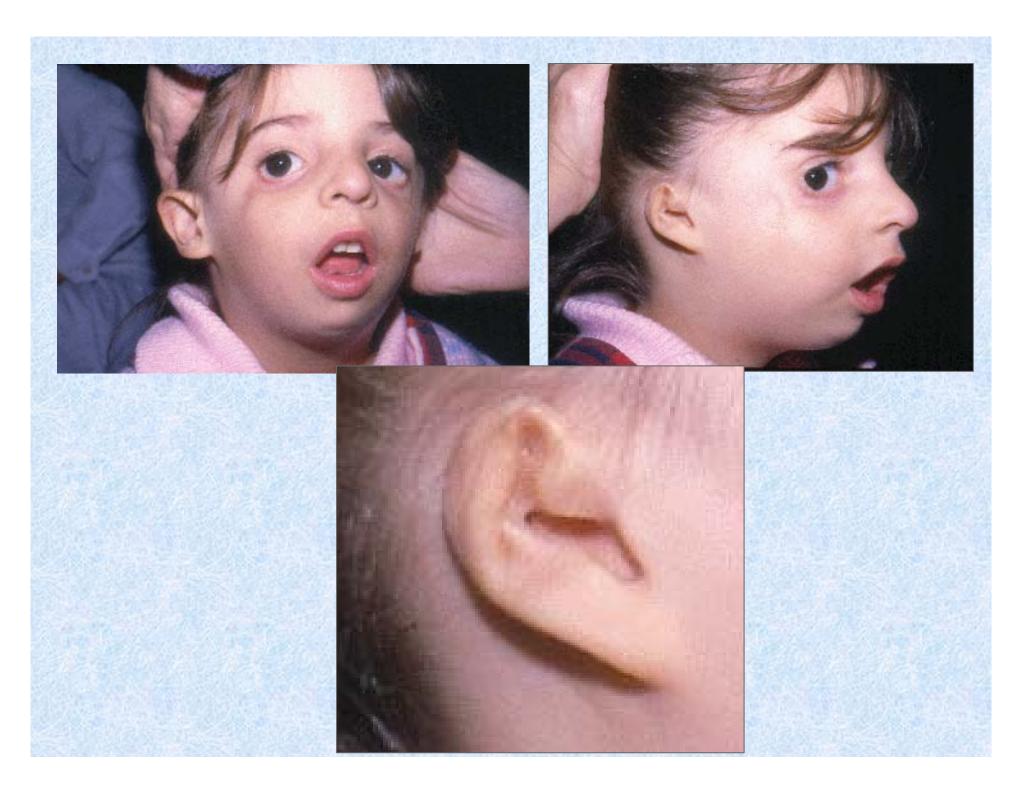




• SD. DE JERVELL & LANGE-NIELSEN – A.R.

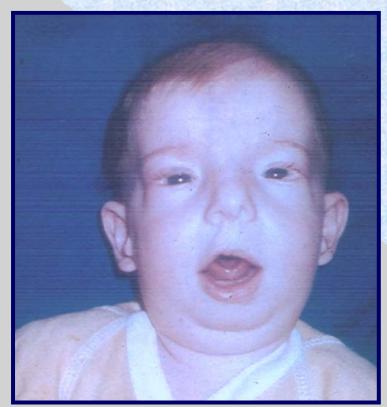
1/100.00 **7 x año**

- HNS severa o profunda prelocutiva por atrofia del Corti
- Prolongación del QT (hasta 450 mseg)
- Riesgo de muerte súbita
- Hacer ECG
- Genes mutados KCNE1 (crom. 21q) KCNQ1 (crom. 11p)

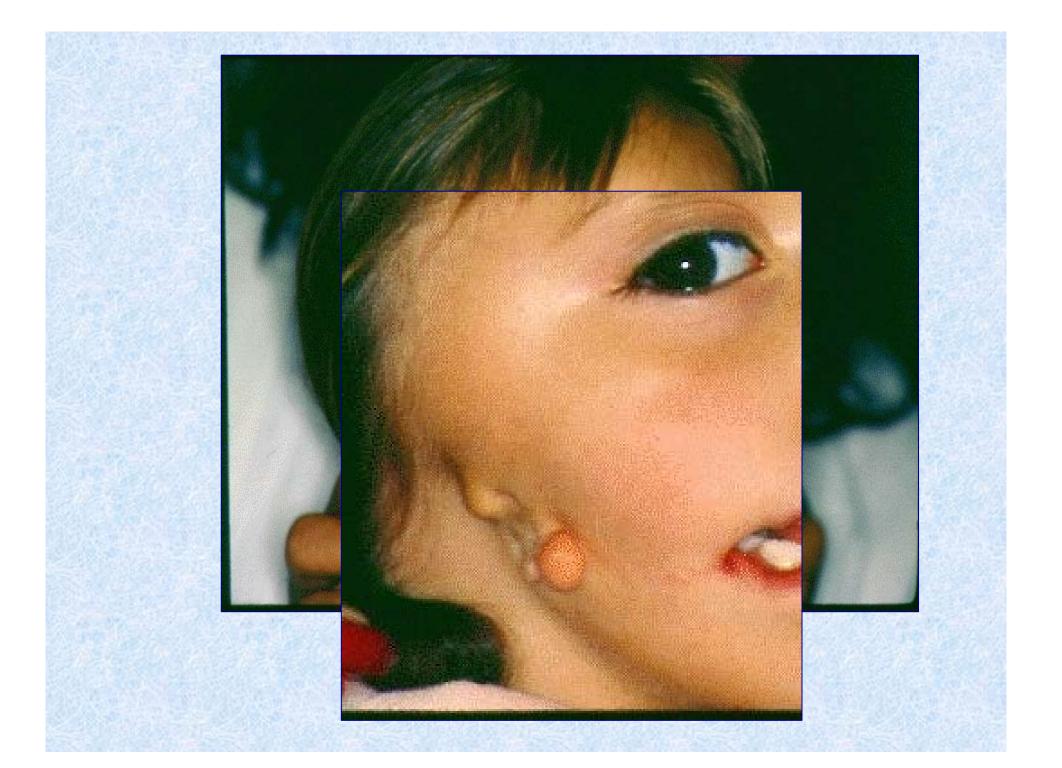


SINDROME DE TREACHER COLLINS Disostosis mandíbulo-facial

- A.D. con expresión variable 60 % mutaciones frescas
- Gen TCOF1 cromosoma 5q
- Disostosis Mandíbulo-Facial
- Hipoplasia malar y mandibular, fisuras palpebrales antimogoloides
- Coloboma parpado inferior,falta parcial o total de pestañas inf.
- Rasgos faciales son bilaterales y simétricos
- Macrostomia, mala oclusión dental
- Fisuras labio palatinas
- H.C. por malformaciones de O.E./O.M.


SINDROME OCULO AURICULO VERTEBRAL

SINDROME DE GOLDENHAR


- Herencia multifactorial
- Malformaciones auriculares
- Microsomía hemifacial
- Macrostomía
- Fusiones vertebrales
- Dermoides epibulbares

Goldenhar (O.A.V.)

Síndromes con hipoacusia de aparición TARDÍA

SD. DOWN

CROUZÓN

NEUROFIBROMATOSIS

OSTEOGÉNESIS IMPER,

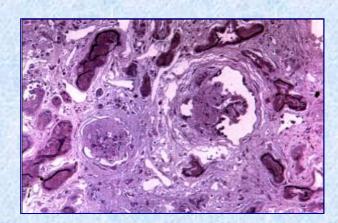
PROGERIA

ALPORT * * *

APERT

MUCOPOLISACARIDOSIS

OTOESCLEROSIS


NAGER

SINDROME DE ALPORT

 HSN postlocutiva progresiva (H.N.S.Tardia) 1%

- Disfunción renal
 - Hematuria microscópica
 - Glomerulonefritis progresiva
 - Hombres mayor que mujeres
 - Progresa al fallo renal en el adulto
 - Anormalidades oculares (lenticono anterior)

85% de los casos **ligados al X** – Gen COL4A5 # También formas AD – AR . Genes COL4A3 – COL4A4)

GRACIAS POR SU PRESENCIA

DR. DANIEL ORFILA Otología-Neurotología

dorfila@intramed.net

Director del IC-EM
Consultor del CEIHDI

DR. HUGO RODRIGUEZ O.R.L. Infantil

harodríguez@argentina.com Hosp. Garrahan