

Flying to the Moon on Radio Waves: Optimizing Outcomes with RF Technologies

Jace Wolfe, Ph.D., CCC-A

The Hearts for Hearing Team

<u>Audiologists</u>

Jace Wolfe, Ph.D., CCC-A Krystal Hudgens, AuD Megan Marsh, AuD Natalie Martella, AuD

Sara Neumann, AuD

Mila Duke, AuD

Johnna Wallace, AuD

Elizabeth Musgrave, B.S., AuD Intern

Speech-Language Pathologists

Joanna T. Smith, M.S., CCC-SLP, LSLS Cert. AVT

Tamara Elder, M.S. CCC-SLP, LSLS Cert. AVT

Darcy Stowe, M.S. CCC-SLP, LSLS Cert. AVT

Lindsay Hannah, M.S., CCC-SLP, LSLS Cert. AVT

Carly Graham, M.S., CCC-SLP, LSLS Cert. AVT

Casey Banks, M.S., CCC-SLP

Jenn Bryngelson, CCC-SLP

Jenna Reese, M.S., CFY-SLP

Tessa Hixon, M.S., CFY-SLP

Additional Team Members

Kris Hopper Sherry Edwards Reyna Romero

Darlene Hale

Susan LaFleur Kristi Murphy Kelsey Kuehn

Kerri Brumley

Megan Miller Christian Boone Verneda Osborne

Pati Burns

From Good to Great!

All too often, good is the enemy of great. – Jim Collins

Oklahoma!

- 50th recent visit to the dentist
- 48th in physical activity

- 50th in % of people who eat at least one vegetable per day
- #1 in fast food restaurants per capita
- 49th in heart health

Road Map

- Adaptive Digital Broadband Wireless Technology
 - Introduction
 - Study with CI Users
 - How about Hearing Aid Users?
- Classroom Audio Distribution Systems
- Audio Streaming

A Noisy World!

The SNR in these environments is typically -5 to +5 dB

- -37 dB A (with A.C. = 52 dBA)
- Classroom:
 - -66 dBA
- School Assembly:
 - 76 dBA
- School Cafeteria:
 - $-82 \, \mathrm{dBA}$
- OKC Thunder Basket
 - 100 dBA

Children with hearing loss need a +15 dB SNR!

The Evolution of Technology

1996 First miniaturized ear-level FM

receiver

2000 Universal ear-level FM receiver

2003 Frequency-flexible FM system

2008 Dynamic FM - the first adaptive FM system

What about Dynamic FM?

No FM

Traditional FM: Gain is fixed

Thibodeau -- Dynamic FM

Thibodeau (2010), American Journal of Audiology

• What is a digital RF system?

Frequency Modulation Radio Transmission

Time	Digital Code	Fours	Twos	Ones
1	2	0	1	0
2	5	1	0	1
3	4	1	0	0
4	2	0	1	0
5	1	0	0	1
6	2	0	1	0
7	6	1	1	0
8	7	1	1	1

Digital Radio Frequency Transmission Amplitude Shift Keying

Digital Radio Frequency Transmission Gaussian Frequency Shift Keying

Dynamic FM & Digital RF

 Does an adaptive digital wireless system offer benefit for Cl users?

Roger Digital Wireless Characteristics

- Audio signals are sampled, digitized and packaged in very short (160 µs) digital bursts of codes (packets) and broadcast several times, each at different channels between 2.4000 and 2.4835 GHz
 - The 2.4 GHz ISM (Industry, Science and Medical) band is globally license free
- Frequency hopping between channels, in combination with repeated broadcast, <u>avoids interference issues</u>
- The frequency hopping is adaptive, both receivers and transmitters are searching continuously to find free channels and to avoid occupied channels
- End-to-end audio delay is well below 25 ms 7500 Hz BW
- Digital control of adaptive (Dynamic) gain changes

Roger Technology

Does it work for cochlear implant users?

What about hearing aid users?

Study Objectives

- Evaluate speech recognition in quiet and in noise with speech (HINT) at 85 dBA at transmitter and classroom noise at 50, 55, 60, 65, 70, 75, 80 dBA
- Evaluated 3 RF remote microphone systems:
 - Fixed-gain FM MLxS
 - Adaptive FM MLxi
 - Digital RF Roger
- Ensure consistency of signal and a lack of interference.

Results Advanced Bionics Recipients (n = 16)

Results Cochlear Recipients (n = 21)

MED-EL and Roger

Wolfe et al., (2013), Hearing Journal

What about hearing aids?

Speech Recognition Benefits of Digital Adaptive Broadband Wireless Transmission Technology

Linda M. Thibodeau

AAA, 2013

Annaheim, CA

Research outline

- Dr. Linda Thibodeau
- University of Texas at Dallas
- Speech in noise testing
- 11 listeners using their own BTE's
- Ages 15 to 78
- Traditional FM vs Dynamic FM vs Roger
- Randomized, blinded
- Different noise levels

The test set-up

HINTResults (N=10)

Hearing Aid & CI Users

Cochlear Implants

Hearing Technology Research with Children

What about digital RF in a classroom audio distribution system?

Classroom Audio Distribution Systems

Goals: Create a uniform distribution of the sound of interest across the classroom, and provide a modest improvement in the signal-to-noise ratio.

May utilize: FM Infrared Digital RF

Classroom Setup

Test Conditions

- No FM
- Phonak DM5000 alone
- Audio Enhancement Elite II alone
- Phonak DM5000 + Personal FM
 - Inspire to DM5000 and Personal FM
- Audio Enhancement Elite II + Personal FM
 - Inspiro connected to audio output port of Elite II
- Personal FM alone
 - Inspiro to personal FM

Children with Hearing Loss CADS Performance

Children with Hearing Loss Chearts of HEARING CADS + FM vs. Personal FM

Clinical Implications

- CADS can improve speech recognition in noise for all students.
- Dynamic CADS provide better speech recognition in noise than fixed-gain CADS.
- Personal FM provides the largest improvement in speech recognition in noise.
- Be careful when using a personal RF system with a CAD system of a different manufacturer.
- Little to no speech recognition in noise improvement with Phonak CADS + Personal FM vs. Personal FM alone.
 - But CADS may improve classroom acoustics in real world.

Bluetooth & Near-field Digital Induction

Why use a streamer?

Bluetooth & Near-field Digital Induction

Near-field Magnetic Inductive Transmission

- Low power requirements
- Can transfer substantial amount of information when paired with Codec (similar to MP3)

Near-field Digital Magnetic Inductive Transmission

To share audio information between ears (Streaming)

- Phonak HiBAN Hearing Instrument Body Area Network
- Digital inductive transfer at 10.6 MHz
 - Transfer of telephone signal -- DuoPhone

Binaural directionality -- StereoZoom

Focused listening – Focus to the left/right -- ZoomControl

- Wind noise management
- •
- Bilateral adjustments Quick Sync
- Oticon Binaural
 - Preservation of binaural cues → localization

Evaluating DuoPhone for telephone use

 Tested word recognition on the telephone in quiet and in noise for children with hearing aids

- 14 children (6-14 years-old)
 - Recorded CNC words

- 10 children (2-5 years-old)
 - NU-CHIPs words via live voice (open-set)

Mean CNC word recognition scores for older children (6-14 years-old)

Mean NU-CHIP word recognition scores for younger children (2-5 years-old)

Hailey: The One-Eared Phone Listener

Hailey and the DuoPhone

Conclusions/Clinical Implications

- Don't settle for good. Shoot for the moon! Great outcomes are possible when we properly use the best hearing technology available today.
- Roger > Dynamic FM > Fixed-gain FM
- Dynamic CAD can provide better speech recognition in noise than fixed-gain CAD.
- Children need to hear with 2 ears whenever possible.

Thank You for Your Attention!

www.heartsforhearing.org