Monitoring Outcomes of Infants & Children Who Wear Hearing Aids

Marlene Bagatto, Au.D., Ph.D.

A Sound Foundation Through Early Amplification Conference Chicago, USA December 9, 2013

Acknowledgements

Funding Sources:

- Canadian Institutes of Health Research
 - Vanier Canada Graduate Scholarship to Marlene Bagatto 220811CGV-204713-174463
 - Frederick Banting and Charles Best Canada Graduate Scholarship to Sheila Moodie 200710CGD-188113-171346
- Ontario Research Fund, Early Researcher Award to Susan Scollie

Collaborators:

- Ontario Ministry of Children and Youth Services Infant Hearing Program
- Richard Seewald, Doreen Bartlett, Linda Miller, Anita Kothari
- Martyn Hyde
- April Malandrino, Christine Brown, Frances Richert, Debbie Clench
- Network of Pediatric Audiologists of Canada
- Ontario Ministry of Children and Youth Services Infant Hearing Program
- Danielle Glista

Process of Pediatric Hearing Aid Fitting

Provision of Hearing Aids

- Suitable technology and evidence-based hearing aid fitting protocols support accurate and safe hearing aid fittings for the pediatric population
 - American Academy of Audiology, 2013
 - Australian Protocol; King, 2010
 - British Columbia Early Hearing Program, 2006
 - Modernizing Children's Hearing Aid Services, 2005
 - Ontario Protocol; Bagatto, Scollie, Hyde & Seewald, 2010

Clinical Need:

Pediatric audiologists who fit young infants with hearing aids need tools to measure the impact of the hearing aid on the child's auditory development

Program Need:

Early Hearing Detection and Intervention (EHDI) programs need tools to assess the overall quality of the program

Considerations for Outcome Evaluation

Target Population:
Infants & young
children who
wear hearing aids

Good Statistical
Properties

Purpose: Measure the impact of the hearing aid fitting

Clinically Feasible

Administration & Interpretation: By Audiologist

Clinically Meaningful

Types of Outcome Measures

Version 1.0

Marlene Bagatto, Sheila Moodie, Susan Scollie 2010

www.dslio.com

UWO PedAMP Development

- Avoid tools that:
 - are too lengthy or complicated
 - rely on information or scoring by other professionals
 - (e.g., standard language measures)
 - May be implemented in other parts of the Early Hearing Detection and Intervention (EHDI) program
- Include tools that:
 - have good statistical properties
 - have good clinical feasibility and utility
 - support family-centered practice
 - help you collaborate better with others

- Maximize efficiency and interpretation through:
 - Visual tools to permit rapid scoring
 - Data to support interpretation

Contents of the UWO PedAMP

Tool	Purpose	Description
Amplification Benefit Questionnaire	Acceptance & use of hearing aidsSatisfaction with services	11 items 5 point rating scale
Hearing Aid Fitting Details	 Quality of hearing aid fitting 	RECD, MPO, Speech Intelligibility Index (SII)
LittlEARS Auditory Questionnaire Tsiakpini et al, 2004	Receptive & semantic auditory behaviourExpressive vocal behaviour	35 items Yes/no response
Parents' Evaluation of Aural/Oral Performance of Children (PEACH) Ching & Hill, 2005	Communication in quiet & noiseResponsiveness to environment	13 items 5 point rating scale

Hearing Aid Fitting Details

- RECD
- MPO
- SII

Functional Outcomes

- LittlEARS
- PEACH

The University of Western Ontario Pediatric Audiological Monitoring Protocol (UWO PedAMP)

Bagatto, Moodie, Malandrino, Richert, Clench & Scollie **2011**

Trends in Amplification Volume 15(1): 57-76

Longitudinal Clinical Observation Study

Other

Other

Consistent HA use

SII Data from Current Study

Administration of LittlEARS

Children with hearing loss who wear hearing aids

76 caregivers; 126 times

Mean age = 26 months

Range = 3 - 72 months

Typically Developing

$$= 30 (40\%)$$

Comorbidities

$$= 19 (25\%)$$

Complex Factors

LittlEARS Scoring

Typically Developing Children with Hearing Aids

Children with Comorbidities with Hearing Aids

Children with Complex Factors with Hearing Aids

All Profiles of Children with Hearing Aids

LittlEARS Results

• Significant impact of group (i.e., typically developing, comorbidities, complex factors) on LittlEARS scores

•
$$p = 0.001$$

 Significant impact of overall degree of hearing loss on LittlEARS scores, though not enough data to analyze by subgroup of degree of hearing loss at this time

•
$$p = 0.021$$

LittlEARS Conclusions

- More data required to further understand special populations (i.e., severe comorbidities, mild/moderate comorbidities, complex factors)
- Majority of typically developing children who have been fitted with hearing aids following an evidence-based protocol are meeting auditory development milestones similar to their normal hearing peers

Interpretation

- Provides information regarding the child's auditory development in relation to normal hearing peers
 - Monitoring unaided children
- With repeated administrations provides a description of the child's progress
 - In relation to individual and normal hearing peers
 - Can contribute to the overall profile of the child

Two-Stage Outcome Measurement Process

Administration of PEACH

86 caregivers; 188 times

Mean age = 44.0 months

Range = 11.2 - 107.1 months

Removed children younger than 24 months of age: N = 65

Typically Developing

Comorbidities

$$= 16 (24.6\%)$$

Complex Factors

PEACH Scoring

PEACH Scores for Children with Hearing Aids

Significant Effect of Degree of Hearing Loss

PEACH Results

- Significant effect of age on PEACH scores (p = 0.026)
 - Supports administration guideline to administer LittlEARS until ceiling score reached and child is >24 months of age
- Degree of hearing loss impacts PEACH scores
 - As hearing loss increases, PEACH scores decrease
 - Group effect by hearing loss level yet to be determined
- No effect of group on PEACH scores yet
 - p > 0.05

PEACH Conclusions

- Majority of typically developing children who are fitted with hearing aids following an evidence-based protocol show typical auditory performance
- Children with comorbidities and complex factors have lower scores than typically developing children
 - Further data collection required to characterize scores for these subgroups

Study Outcomes

- Typically developing children with hearing aids demonstrate good auditory development and performance when evidencebased hearing aid fitting protocols are followed
- Children with comorbidities or complex factors related to hearing aid use show poorer performance than those who are typically developing
- Further data is required to characterize the performance of special populations
 - By group
 - By degree of hearing loss
 - Outcomes over time

Further Research

- Collaboration with Vanderbilt University
 - Rene Gifford, Andrea Hedley-Williams, et al.
- Data from specific groups:
 - children who wear hearing aids
 - children who wear cochlear implants
- To better understand outcomes for each group

PEACH Scores for Children with Hearing Aids & Cochlear Implants

Advantages of Subjective Outcome Measures

- Families become good observers of their child's auditory behaviours in the real world
- Families develop a shared language with the clinician
- Can be conducted with children who have complex needs
- No special equipment required
- Available in several languages
 - Use interpreter if needed

Objective Outcome Measures

Ling 6 Detection
Scollie et al, 2012

UWO Plurals Glista et al, 2012

The Ling 6 Sounds

- /m/, /u/, /a/, /i/, /J/, and /s/
 - These span the speech frequencies
- Originally proposed for live voice use by therapists: (see Ling, 1989 for more detail)
 - Probe whether child can detect all sounds
 - Probe whether child can discriminate the sounds
 - Do these prior to every therapy session
 - Protects against running a therapy session during a period of hearing aid malfunction, etc.

In Current Practice

Suggested Use	Details
Aided detection task for infants who wear hearing aids	Confirm reception of sound Demonstrate efficacy to parents Not discrimination or identification
To determine if hearing aid bandwidth/dsp provides access to all 6 Ling sounds	Effects of extended bandwidth or frequency lowering Glista et al., 2009; Wolfe et al., 2010; Wolfe et al., 2011
Aided detection task to provide information about device function for fittings that cannot be verified using real ear measurement	Cochlear implants Bone conduction systems Bass-Ringdahl, 2010; Davidson, et al., 2009; Tharpe, Fino-Szumski, & Bess, 2004; Hodgetts, Hakansson, Hagler, & Soli, 2010

A specific tool: Ling 6 (HL)

Scollie et al, 2012

- Pre-recorded female utterances of each sound
- Norms for detection in dB HL in sound field
- Scoring corrections, a score sheet, and a CD
- Normally hearing listeners:
 - Detect the sounds between 10 and 10 dB HL
 - Have average test-retest reliability of 1 – 2 dB and a range of test re-test of one to two step sizes

Score Sheet

Ling-6(HL) Scoring Sheet

Test type: □Aided □Unaided □Cl □ Bone conducted □ BAHA

Masking (unaided ear)?□n/a □ Yes □ No

Plot the corrected threshold values in dB HL below.

Grey region shows the normal hearing range.

Values assume binaural sound field testing at zero degrees azimuth.

Sample Case

- Age 3 yrs 6 mos
 - Moderate SNHL bilaterally
- Fitting: DSL v5.0
- Standard audiometry, good reliability on Ling6

Ling-6(HL) Scoring Sheet

Name:		D.O.B:		
Date:		Respondent:		
Notes on testing conditions:				
Test method:	Standard	□CPA	□VRA	
Reliability:	☐ Good	☐ Fair	□ Poor	
Test type:	□Aided	□Unaided	□Cl □ Bone conducted □ BAHA	
Masking (unaided ear	lZ□n/a	Yes	□ No	

Plot the <u>corrected</u> threshold values in dB HL below.

Grey region shows the normal hearing range.

Values assume binaural sound field testing at zero degrees azimuth.

The UWO Plurals Test

Glista et al, 2012

- Developed to be similar to a research task used in evaluating hearing aid bandwidth at Boys Town Stelmachowicz, Pittman, Hoover, & Lewis, 2002
- Nouns in singular & plural form at a high SNR
 - The task is to hear the word-final fricative
 - Sensitive to high frequency audibility
- UWO version uses 15 nouns: ant, balloon, book, butterfly, crab, crayon, cup, dog, fly, flower, frog, pig, skunk, sock and shoe
 - Pre-recorded, calibrated, available on a CD with scoring and interpretation guidelines

Administration

- Present at an overall level of about 55 dB(A)
 - This represents speech at a slightly soft level
- A background noise is built-in
 - Ten randomized lists are provided
- Use picture flip cards to administer using a pointing response
 - This is helpful if the child's own productions of the word would be unclear
 - Tip: pre-sort the cards into the correct random order for the list(s) you will use

Scoring & critical differences

Aided test #2, after readjusting: 79% correct

Aided test #1: 64% correct

Scoring & critical differences

- The plotted score falls outside the shaded region and is therefore significantly better
- The re-adjustments improved the score significantly
- Note that this test does not assess correct speech sound identification

Review of Tests

- Ling 6 (HL) can assist in determining if a hearing aid fitting provides access to all 6 sounds
 - Potential for use with young children and infants
 - Further research is being conducted to determine impact across multiple listening conditions (e.g., with insert earphones and at different azimuths)

Review of Tests

- UWO Plurals Test is sensitive to differences in aided audibility of high-frequency bandwidth
 - Limited to use with children and adults
 - Can help determine performance differences across hearing aid fittings that differ in the highs (e.g., frequency lowering)
- Both tests are limited to measuring speech sound detection and do not tell you about speech recognition or discrimination

Advantages of Objective Outcome Measures

- Direct measure of child's hearing in aided and unaided conditions
 - Demonstrations to the family
- Most clinics already have the needed equipment
- Useful to combine with subjective measures to give comprehensive description of outcome

Importance of Outcome Evaluation

- Patients
 - Track and monitor
 - Involve parents result: good observers
 - Shared language
- Audiologists
 - Way to measure impact of hearing aid fitting
 - Improve efficiency and effectiveness of service delivery
 - Improve communication with families and professionals
- EHDI
 - Measure how program is doing
 - Helps describe patterns that affect children within the program

Process of Pediatric Hearing Aid Fitting

Marlene Bagatto bagatto@nca.uwo.ca

