Children who are Hard of Hearing: Still Forgotten?

Mary Pat Moeller, Ph.D.

A Sound Foundation Through Early Amplification
December, 2013
Chicago, IL
Children who are “Hard of Hearing”

- Characteristics of children who are HH:
 - Hearing levels in the mild through moderately severe range
 - Use hearing aids rather than CIs
 - Reliant on spoken language for functional communication (Jamieson, 2010)

- Described by Julia Davis as “Our Forgotten Children”
Why Called “Forgotten Children?”

- Underestimation of needs
- Limited training of classroom teachers, school personnel
- Little is known about:
 - outcomes and academic achievement
 - problems faced in classrooms
 - extent of support services & impact
- Poorly monitored amplification

Davis, J. (1977)
Background

- 30,000 children < age 6 have mild-to-severe, persistent bilateral hearing loss

- Paucity of research on outcomes of HH children
 - Reflect a belief that HL does not place these children at risk?

- NIDCD Working Group in 2006 identified research gaps & needs
 - Ear & Hearing, 2007
OCHL Study: Aims

- To describe the characteristics of:
 - children and families
 - intervention services
 - factors associated with service variations
- To measure a range of:
 - child and familial outcomes compared to NH age-mates with similar backgrounds
- To explore:
 - how variations in child & family factors & intervention characteristics relate to functional outcomes

Supported by NIDCD R01 DC009560
Each child followed for 3+ years (around birthday)
- Comprehensive battery of child, family, & intervention measures
Sample Description

<table>
<thead>
<tr>
<th></th>
<th>HH</th>
<th>NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>316</td>
<td>115</td>
</tr>
<tr>
<td>Hearing (PTA)</td>
<td>25-75 dB HL</td>
<td>< 20 dB HL</td>
</tr>
<tr>
<td>Age ranges</td>
<td>0;6 to 6;11 at entry</td>
<td></td>
</tr>
<tr>
<td>Nonverbal IQ</td>
<td>Within the average range</td>
<td></td>
</tr>
<tr>
<td>Maternal education</td>
<td>Matched but > US sample</td>
<td></td>
</tr>
<tr>
<td>Language use</td>
<td>Spoken English in the home</td>
<td></td>
</tr>
<tr>
<td>Additional disabilities</td>
<td>No autism; no major vision, cognitive, or motor disabilities</td>
<td></td>
</tr>
</tbody>
</table>

From 17 states
76.1% HH children identified through NHS
Many HH children demonstrate resilience
- Some children (25-30%) & some aspects of development are particularly susceptible to effects of HL.
- Strong and systematic effects of degree of loss on speech and language development.
- HL interferes with consistency/quality of access to input.
- Aspects of language *most dependent on the fidelity of the speech signal* may be most vulnerable to delays.
Children with HL experience inconsistent access to linguistic input, due to:

- **Periods without amplification**
 - Delays in hearing aid fitting
 - Inconsistent hearing aid use

- **Limitations of hearing aids**
 - Bandwidth
 - Audibility

- **Effects of negative environmental acoustics**
 - Distance, noise, and reverberation
Profile of Relative Strengths and Vulnerabilities at 3 yrs

- ★ ★ Mild hearing loss (25-45 dB HL)
- ★ ★ ★ Moderate & Mod-Severe (> 45 dB HL)

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>85</th>
<th>100</th>
<th>115</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC CONCEPTS</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNTAX</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRAGMATICS</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPEECH PRODUCTION</td>
<td>★</td>
<td>★</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tomblin, Oleson, Ambrose, Walker, & Moeller, in review
Evidence of Vulnerable Domains

Articulation

Use of verb endings (sits, goes, walked)

\[p < .001 \]

Koehlinger, Owen Van Horne & Moeller, *JSLHR*, 2013

63% > 1 SD
Emerging Model: Inconsistent Access

Hearing Loss (degree, type, configuration, & stability) → Cumulative Auditory Experience → HA Use History (duration, consistency) ↔ Audibility ↔ Linguistic Input → Outcomes
- Linguistic
- Social
- Auditory
- Family
Degree to which HA improves audibility is constrained by severity of HL

Created residual SII (rSII)
 - To test unique contribution of HAs (Aided SII)
 - After controlling for the unaided SII

Tomblin, Oleson, Ambrose, Walker, & Moeller, in review
1. Audibility provided by HA is significantly associated with speech & language.
2. Audibility has similar relationship with outcomes for children with mild and moderate-to-severe HL.
Spontaneous language samples - 51 HH 3 yr olds

Do hearing-related factors predict use of word endings?
- BEPTA, SII, 4kHz SL

Does perceptibility influence accuracy in HH?
- In NH children, /s/ and /z/ emerge before /l/z/
- Hits, cars > houses, fixes

More audible?

Owen Van Horne, Koehlinger, Oleson, & Moeller, in preparation
Summary of Results

- Audibility matters
 - 4kHz SL predicts word endings
 - Audibility in the high frequencies + articulation skills are essential for development of English morphology

- Perceptibility influences in HH
 - HH different from NH /lz/ > /s/ and /z/

Owen Van Horne, Koehlinger, Oleson, & Moeller, in preparation
Challenges to Consistent HA Use

More challenges:
• At young ages (toddlers)
• With mild degrees of hearing loss
• Less educated families

Strategic counseling?

Greatest Benefit of Aided Hearing Seen With Longer Use

<table>
<thead>
<tr>
<th>Duration Category</th>
<th>Outcome</th>
<th>Linear Slope (Beta)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Language</td>
<td>3.89</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Speech</td>
<td>58.49</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>Language</td>
<td>3.66</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Speech</td>
<td>80.26</td>
<td>0.005</td>
</tr>
<tr>
<td>3</td>
<td>Language</td>
<td>2.43</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Speech</td>
<td>52.93</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>Language</td>
<td>-0.70</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>Speech</td>
<td>30.42</td>
<td>0.17</td>
</tr>
</tbody>
</table>

n = 161 (Speech); n = 148 (Language)
HH children at 3 and 5 years of age

Tomblin, et al., in review

rSII significantly associated with speech & language

Greatest benefit of aided hearing for s/l seen with longer HA use
How Much Input?

M age = 30 months

HH n = 38
NH n = 17

No significant differences between groups

For HH group, more input = better language

- Mullen Receptive correlated with AWC ($r = 0.44^{**}$) and CTC ($r = 0.46^{**}$)

Ambrose, Van Dam & Moeller, JDSDE, 2012
Parent-child interaction samples analyzed in 3-year olds

HH group exposed to significantly:
- fewer high-level utterances
- more directive utterances

HH CASL scores significantly correlated with:
- proportion of high-level utterances ($r = 0.57$)
- proportion of directives ($r = -0.38$)

HH group also exposed to:
- less complex utterances
- fewer different words

Ambrose, et al., in preparation
Emerging Model: Inconsistent Access

Hearing Loss
(degree, type, configuration, & stability)

Cumulative Auditory Experience

Audibility

HA Use History
(duration, consistency)

Linguistic Input

Home/Environmental Factors:
- SES
- Parenting skills
- Auditory environment

Educational Interventions

Outcomes
- Linguistic
- Social
- Auditory
- Family

Child Factors
- Cognition
- Temperament
- Age
- Executive Function
Protective Factors

What protective factors result in resilience?
Protective Factors: Big Picture

- Milder degree of hearing loss
- Better audibility
- Well-fit amplification
- Longer duration of hearing aid fitting (early fit)
- Amplification worn consistently
- High quantity and quality of linguistic input
- Provision of timely & consistent early interventions
- More resourced homes
- Stronger cognitive abilities
Early Intervention Services

Contribution of number of early intervention visits per month to CASL Scores at 3 years (regression results)

- Covariates (sex, race, maternal ed**, PTA)
- Number visits per month**
- Unexplained

145/155 infants received early intervention
Implications: No Longer Forgotten

- Optimize audibility
 - Audibility matters
 - Benefits observed with longer durations of use
- Promote use consistency
 - Toddlers; mild HL
 - Novel approaches?
- Support families to provide language-rich environments
 - Promotes cumulative auditory-linguistic experience
University of Iowa
J. Bruce Tomblin, Ph.D. (Co-PI)
Marlea O’Brien, (Program Coordinator)
Rick Arenas, Ph.D. (IT)
John Knutson, Ph.D.
Ruth Bentler, Ph.D.
Lenore Holte, Ph.D.
Elizabeth Walker, Ph.D.
Connie Ferguson, M.S.
Marcia St. Clair, B.A.
Wendy Fick (data entry)
Jacob Oleson, Ph.D. (biostatistics)

BTN RH
Mary Pat Moeller, Ph.D. (Co-PI)
Patricia Stelmachowicz, Ph.D.
Ryan McCreery, Ph.D.
Sophie Ambrose, Ph.D.
Meredith Spratford, Au.D.
Lauren Unflat Berry, M.S.
Keegan Koehlinger, M.S.
Colleen Fitzgerald., M.A.
Barbara Peterson, M.A.
Mark Van Dam, Ph.D.

University of North Carolina-Chapel Hill
Melody Harrison, Ph.D.
Patricia A. Roush, Au.D.
Shana Jacobs, Au.D.
M. Thomas Page, M.S.

Supported by NIDCD R01 DC009560