

An Update on Auditory Neuropathy Spectrum Disorder in Children

Gary Rance PhD
The University of Melbourne

Overview

- ◆ Auditory neuropathy spectrum disorder (ANSD) often described as "a newly identified form of hg loss"
- ◆ 1984: Kraus et al. presented children with inconsistency between auditory evoked potential and audiometric results
- ◆ 1991: Starr et al. described ANSD in an adolescent subject
- ◆ 1999: Rance et al. presented a group of infants with ANSD pattern
- → 1671 scientific papers
- ◆ Today's presentation
 - Provide an overview of what we have learnt
 - Consider some of the current clinical challenges
 - Research questions for the future

Auditory Neuropathy Spectrum Disorder (ANSD)

- ◆ Also referred to as: auditory neuropathy, auditory dys-synchrony, auditory synaptopathy...
- ♦ Hearing impairment in which cochlear outer hair cell function is "normal" but afferent neural transmission is disordered
- ◆ Indicated by the presence of pre-neural responses (OAE / CM) with absent or severely disrupted auditory neural responses (ABR)

CM /ABR assessment for a 3 mo old with ANSD

Paediatric ANSD

- ◆ Congenital/Perinatal
 - » anoxia
 - »hyperbilirubinaemia
- ◆ Progressive
 - Neurodegenerative disease
 - » Onset physical symptoms usually in adolescence
 - » Identified earlier (routinely see 1-4 yr olds in clinic)
 - » Hearing difficulties often the first presenting symptom

Possible mechanisms producing the ANSD result pattern

- ◆Cochlear damage restricted to the inner hair cells (IHC)
- ◆IHC/auditory nerve synapse
- Auditory nerve abnormality
 - reduced neuronal population
 - disruption of neural synchrony
 - cochlear nerve deficiency
 - tumour

Axonal & Demyelinating ANSD

- **♦**Charcot-Marie-Tooth Syndrome
- ◆ Progressive genetic disorder characterized by loss of muscle tissue and touch sensation (motor & sensory neuropathies)
- ◆ CMT1: demyelinating process
- ♦ CMT2: axonal loss
- ◆ Later stages see absent ABR but early in the disease course responses still present

ANSD Clinical Profile

◆Prevalence

- Congenital/Perinatal ANSD
 - » 1 in 800-1000 children show permanent hearing loss
 - » 5-15% of those present with the ANSD result pattern
- Neurodegenerative disease
 - » List of diseases associated with ANSD growing
 - ◆ FRDA/CMT/LHON/ADOA...
 - » relatively rare
 - » Friedreich ataxia most common: ≈ 1 in 20,000
 - ◆ All show ANSD at some point in the disease course

ANSD Clinical Profile

- ◆Behavioural audiogram
 - -Level: normal hearing to profound loss
 - All configurations: ≈30% low frequency
 - -Fluctuating hearing
- ◆Acoustic reflexes
 - Typically absent (regardless of hearing level)
- ◆Functional hearing
 - -Impaired speech perception

Speech Perception

- Consistently reported problem in both adults and children with ANSD
- Difficulties out of proportion with the behavioural audiogram
 - Abnormal speech perception in subjects with "normal hearing"
 - Subjects with elevated hearing thresholds show speech perception poorer than for SN loss of equivalent degree

Open-set Speech Perception v Hg Level for Children & Adults with ANSD

Open-set Speech Perception v Hg Level for Children & Adults with ANSD

Why is speech perception often poorer than expected?

- ♦Signal distortion
- Timing of neural conduction disrupted
- ◆ Impaired perception of temporal cues in speech
 - Inability to judge vowel duration
 - » eg. hid vs heed
 - Inability to discriminate consonants based on timing cues
 - »eg. pin vs bin tin vs din
- Degree of distortion not consistent across children

Speech Perception in Noise

- ◆ Extreme difficulty reported in adults and children with ANSD (Kraus et al., 2000; Rance et al., 2007; 2010; 2012; Starr et al., 1998)
- Some cases show normal understanding in quiet and negligible perception in "everyday" listening conditions

Why is speech perception in noise a particular problem in ANSD?

◆Gap listening

-Impaired ability to use brief quiet periods in the noise to access the signal

Spatial processing

Impaired ability to use inter-aural timing cues to localize sound sources

Spatial Processing

- ◆ Affected in ANSD as the neural representation of timing cues in left/right auditory nerves is degraded
- ♦ inter-aural difference cues [<1 msec] can't be effectively combined in the brainstem</p>
- ◆ Listening in Spatialized Noise Test (LiSN-S)
 - sentences in noise
 - spatial advantage: the improvement in speech perception when the signal and background noise are presented from different directions

Spatial Advantage (LiSN-S) for Children with ANSD

Spatial Advantage (LiSN-S) for Children with ANSD

Spatial Advantage (LiSN-S) for Children with ANSD

Clinical Management of ANSD

- Children with ANSD form a heterogeneous group
 - Range of different aetiologies
 - Different clinical presentations
- ◆ Range of different management challenges
- ◆ Some questions explored in the recent literature include:
 - How should ANSD children with normal sound detection be managed?
 - Should hearing aids and CI be used in concert?
 - Should the contra-lateral ear be occluded in children with unilateral CI?
 - Can we predict cochlear implant outcomes for ANSD children in the preoperative phase?

Management of Children with ANSD

Hearing Aids

VS

Cochlear Implants

- Conventional Amplification
 - Arguments against amplification
 - » Inherent pathway limitations
 - » Potential for cochlear damage
 - Argument for amplification
 - » Increased access to the speech signal (if sufficient gain is provided)
 - Speech perception outcomes
 - » 40-50% show significant benefit
- Digital Speech Processing Aids
 - Manipulate speech signal to make temporal cues more salient
 - » Limited results/success (so far)

◆ Cochlear Implantation

 Currently the option of choice for most individuals with ANSD

Speech Perception Outcomes

- » Most reported cases have performed at levels similar to peers with SN-loss
- » Some poor results
- » Teagle et al. (2010)
- » 52 children with open-set scores
- » 27% of cases showed speech perception scores <30%</p>

ANSD Management: Hearing Aids / Cochlear Implants

- ◆ Melbourne Long-Term Outcome Study
 - Infant ANSD first identified in Melb (1989)
 - Tracking these individuals from infancy to adulthood

◆ Longitudinal data

- Audiometry
- Basic auditory perception (temporal/frequency processing)
- Speech perception (quiet/noise)
- Hearing disability ratings
- Expressive/receptive language development

Long-term Language Development in ANSD

- ◆ Receptive Language
 - Peabody Picture Vocabulary Test (PPVT)
 - determines an "equivalent language age" based on norms for normally hearing/developing children
- \bullet Longitudinal data: (4 yrs 20 yrs)
- ◆ Subjects (November 2013)
 - Aided ANSD children (n=8)
 - Implanted ANSD children (n=6)
 - Implanted SNHL children (n=6)

Longitudinal Study Conclusions (Preliminary)

◆Most implanted children with ANSD show long-term language outcomes equivalent to those of young implantees with SN-loss

Some children with ANSD managed with conventional hearing aids can perform as well as the average implantee

Clinical Challenge

◆ How to predict whether a newly diagnosed baby will perform better with conventional hearing aids or CI?

Considerations

- Anatomy: if a child has no nerve then a CI will not be beneficial
- Sound detection thresholds: if hg levels are in the severe/profound range the child is unlikely to benefit from amplification (same audiologic selection criteria as for SN-loss)
- Auditory capacity: perceptual ability in cases with hg. levels in the mild/severe loss range determined by the degree of temporal distortion

Measuring Auditory Capacity in Infancy

- ◆ Measuring the degree of temporal processing deficit ⇒ predicting long-term outcomes remains a major challenge
- ◆ Current research directions
 - Behavioural techniques
 - » Conditioned psychophysics (VRA)
 - » Unconditioned psychophysics
 - ◆Eg. eye tracking technologies

Measuring Auditory Capacity in Infancy

- ◆ Measuring the degree of temporal processing deficit ⇒ predicting long-term outcomes remains a major challenge
- ◆ Current research directions
 - Evoked potential techniques
 - » Cortical Auditory Evoked Potentials
 - ◆ Acoustic Change Complex (where the response is elicited by temporal variations in the stimulus)
 - » Auditory Steady State Responses
 - where the potential is elicited by fluctuations in a continuous stimulus

Summary & Conclusions

- ◆20+ years of experience with paediatric ANSD has led to significant advances
 - Understanding of mechanisms
 - General pattern of functional outcomes
- ◆ Results in individual children are highly variable and so the management of affected youngsters remains a challenge...

Thankyou

