A review of the benefits of SoundRecover for children

Andrea Bohnert
University Medical Center of the Johannes Gutenberg-University Mainz
Department of Oto-Rhino-Laryngology, Division for Communication Disorders
Identification of high frequency speech sounds

- Severe Hearing loss:
 Difficulty in recognizing high frequency speech sounds like: /f/, /s/, /sh/

- Grammatical Information:
 - Plurality of pronouns
 - Possessive pronouns

Pat Stelmachowicz et al., 2000 – 2004, Boys Town
Identification of high frequency sounds

- Identification of many types of sounds....
 - Birdsongs
 - Alarms
 - Doorbells
 - Telephone ring tones etc.

- Sounds are valuable – enhance the quality of a child’s overall experience of hearing

Refers to children with tonal and non-tonal languages
Speech spectrum

\(/S/\) male, female, child speaker

- 5 kHz male
- 6-9 kHz female
- 9 kHz child

Boothroyd et al., 1992
Stelmachowicz et al., 2001
Hearing instruments

More gain in high frequencies?

- Increased risk of feedback
- More high frequency gain is often considered uncomfortable – too loud, too shrill, too sharp
- Dead Regions - „off frequency listening“
Hearing Impairment

Dead Regions

„... regions in the cochlea with no or few functioning inner haircells and/or neurons“

(Moore 2004)
Frequency compression (FC) = SoundRecover

Launer, Chicago 2007
Frequency Compression (FC)

Original signal

Simulated high frequency hearing loss

Non-linear frequency compression

Launer, Chicago 2007
Frequency Compression (FC)

- Different FC settings
- FC is only applied to frequencies above the cut-off frequency
- FC output signals do not overlap lower frequencies
- Global relations between different speech components remain intact
Frequency Compression (FC)

What happens if we use frequency lowering?
Who is a candidate?
Does it help?
Is there evidence?

A lot of studies are available from.........
Studies on Frequency Compression

Glista et al., 2009a *Int J Audio1-13, DOI: 10.1080/14992020902971349*

Glista et al., 2009 *Hearing Review, 16 (12): 20-24*

Scollie et al., 2011 *ENT & Audiology News, vol. 20, no. 5, pp. 83–87*

Glista et al., 2012 *American Journal of Audiology, 21: 76-81*

Glista et al., 2012 *Journal of Speech, Language, and Hearing Research. Vol. 55,1-23*
Studies on Frequency Compression

Wolfe et al., 2009 *The Hearing Journal* 2009 62(9): 32- 35

Wolfe et al., 2010 *J Am Acad Audiol* 21 (10): 618-628

Bohnert et al., 2010 *Eur Arch Otorhinolaryngol*, DOI 10.1007/s00405-009-1170-x

Wolfe et al., 2013 *The Hearing Journal*, 66(9), 26-29

Wolfe et al., 2014 *The Hearing Journal*, in press

Wolfe et al., 2014 *J Am Acad Audiol*, submitted

Wolfe et al., 2014 *J Am Acad Audiol*, submitted
Studies on Frequency Compression

They found

- Significant improvements in high frequency speech sound detection and recognition
 - No decrement for vowel recognition

- Improved audibility for sounds and speech recognition in quiet

- Offers improvement in recognition in noise
Studies on Frequency Compression

They found

• Significant candidacy factors

 - Greater degree of high frequency hearing loss
 - Children had more benefit and preference
 - Individual variability
 - Possible acclimatization effects
 (6 to 8 weeks, may relate to degree of HL)
Frequency Compression – own studies

Children with a severe to profound loss:

- Can we demonstrate speech recognition benefit?
- In quiet as well as in noise conditions?
- How long will it take for children to acclimatize?

Which configurations of hearing loss will benefit....

Steep or flat losses???
Clinical field trial

- 13 children (4 f, 9 m)
- 6-15 years of age (Mean Age: 10 years, 5 mths)
- Full-time users of digital behind-the-ear hearing aids.
- Fitted on DSL basis with high quality HA
- No previous experience with frequency lowering technology
- Oral-Aural communicators with German as primary language
Study - Group results – GII T1 vs T5
Study – Group results – HF-AAST in quiet

Spondee Test in quiet
- high frequency words -

SRT (dB)

SPIQ HI on T1
SPIQ SR on T2
SPIQ SR off T2
SPIQ SR on T5
SPIQ SR off T5

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9
Subject 10
Subject 11
Subject 12
Subject 13
Study – Group results – HF-AAST in noise

Spondee Test in noise
- high frequency words (trochee) -

Subject 1-13

T1 vs T5 on p<0.001 on / T1 vs T5 p<0.005 off
Pediatric Fitting Method for FC

Protocol developed by

✉️✉️ Glista & Scollie

Audiology Online 2009

✉️✉️ Scollie, Glista, Bagatto, Moodie

Ontario Infant Hearing Program 2011

Frequency-Lowering Hearing Aids Protocol Addendum and Support Document
Fitting Method for FC (pediatric)

1. Frequency response should be based on DSL 5 \(m \) [i/o] child
2. Fit to target with FC \textit{disabled}
 - Provide audibility of high frequency cues as good as possible
 - Measure with speech shaped signal / ISTS
3. \textit{Enable} FC
4. Measure with speech shaped signal / ISTS \textit{and} with filtered high frequency speechband stimuli
5. Life voice - /s/ and /sh/
Verification

- Speech shaped signal / ISTS Signal (International Speech Test Signal)
- Filtered high frequency speech band signal
Verification

- Filtered high frequency speech band signal (Speechsignal)

Notch filtered speech signal

High frequency band is left

The notch lets you observe lowering the high frequency band

Centre frequencies:
- 3150 Hz
- 4000 Hz
- 5000 Hz
- 6300 Hz

Screenshot from Audioscan Verifit
FC disabled / enabled

- Filtered high frequency speech band signal (Speechsignal)

Without FC, 6300 Hz below threshold
FC disabled / enabled

- Filtered high frequency speech band signal (Speechsignal)

Without FC, 6300 Hz below threshold

With FC, 6300 Hz above threshold

/s/ is audible now!
FC settings

- Software provides default setting for FC
- Cut off frequency / Compression ratio set to audiogram better ear
- Verify audibility of /s/ and /sh/
- Fine-tune if necessary....!!!!!!!
FC settings

- Software provides default setting for FC
- Cut off frequency / Compression ratio set to audiogram better ear
- Verificate audibility of /s/ and /sh/
- Fine-tune if necessary....!!!!!!!

Fine-tuning
Take home message for FC fitting

- Fine tuning is possible!
- Gain and FC interact
- Less high frequency gain use a stronger FC setting to make /s/ audible

Use always the weakest setting that has positive effects to make /s/ audible
Summary

Several studies showed significant improvements in:

- Aided sound detection
- Speech recognition in quiet and in noise
- Subjective benefit
- For mild to moderate, severe and profound HL
- Acclimatization effects for newly audible HF sounds
Summary

✓ Viable and robust technology for adults and children
✓ It does need to be individually and carefully fitted

Respect the protocols for fitting Lowering Technologies!!
What about FC and tonal languages...?

A language difference is expected due to........

- **Lexical tone** contribution

- The consonant-vowel syllable structure in Mandarin differs significantly from the complex syllable structure of English

- Mandarin sentences result in a larger proportion of sentences being identified based on vowel segments (i.e., 66% in Mandarin vs. 45% in English [Chen, Wong and Wong, JASA 2013; Fogerty and Kewley-Port, JASA 2009])

- The statistical probability of syllable identification in Mandarin based on vowel segment is much higher than in English
What about FC and tonal languages...?

- HF information is important, but not to the same extent as in non-tonal languages.
- Low frequency information - vowel carries about 3 times more information as e.g, in English (2:1) (Chen, Wong and Wong, JASA 2013)
- HF consonants do not carry lexical information

HF are important carriers of speech information

eg. distinguishing different words
What about FC and tonal languages...?

- Most tonal information is contained in frequencies below 1500 Hz
- Therefore FC do not harm tonal languages

High pitched environmental information is important for the quality of a child’s overall experience of hearing.
Clinical implications – future questions...?

We still need to learn more.........

....about the effects of *FC and tonal languages*

Studies
Department of Otorhinolaryngology, Head and Neck Surgery
The Chinese University of Hong Kong
Team of Dr. Anna Kam
„Clinical Evaluation of Frequency Compression Technology”

Tongren Hospital, Beijing
Team of Dr. Chen
„Frequency Compression and tonal languages“