TELEPRACTICE IN PEDIATRIC AUDIOLOGY: EXPANDING AUDIOLOGY HORIZONS FOR CHILDREN WITH HEARING LOSS

International Pediatric Audiology Conference, Shanghai 2014

De Wet Swanepoel, PhD

1. Dept of Speech-Language Pathology & Audiology, University of Pretoria, South Africa
2. Ear Sciences Centre, University of Western Australia, Ear Science Institute Australia
3. Callier Center for Communication Disorders, University of Texas at Dallas, USA
ACKNOWLEDGEMENTS

Leigh Biagio & Faheema Mahomed, Dept of Speech-Language Pathology & Audiology, University of Pretoria, South Africa

Prof Claude Laurent & Dr Thorbjorn Lundberg, Depts of Otolaryngology and Family Medicine, Umea University, Sweden

Prof Robert Eikelboom, Ear Sciences Centre, School of Surgery, University of Western Australia & Ear Science Institute Australia
OUTLINE

• Global Childhood Hearing Health – Challenges
 – Prevalence
 – Access to care

• Exploring Novel Solutions - Telehealth
 – Remote diagnosis of hearing loss in primary health care
 – Remote diagnosis of ear disease in primary health care
PREVALENCE OF CHILDHOOD HL

Global Situation

• Everyday 1753 born with significant permanent SNHL:
 – 1643 born in developing world (5/1000)
 – 110 born in developed countries (3/1000)

• >90% born in developing world

(UNICEF, 2008; Olusanya & Newton, 2007; Olusanya et al. 2008; Smith et al. 2005)
PREVALENCE OF CHILDHOOD HL

<table>
<thead>
<tr>
<th>Regions</th>
<th>DHL in children (<15 yoa)</th>
<th>Prevalence %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Millions</td>
<td></td>
</tr>
<tr>
<td>High-income</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>6.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>South Asia</td>
<td>12.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>3.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Latin America & Carribbean</td>
<td>2.6</td>
<td>1.6</td>
</tr>
<tr>
<td>East Asia</td>
<td>3.6</td>
<td>1.3</td>
</tr>
<tr>
<td>World</td>
<td>31.9</td>
<td>1.7</td>
</tr>
</tbody>
</table>

(WHO, 2013)
HEARING HEALTH CARE ACCESS

- Available hearing health service distribution inequality
- Geographical, weather and infrastructure obstacles
 - Large distances & remote communities
 - Poor transport infrastructure
 - Expensive referral pathways
EXPLORING TELEHEALTH

• Telehealth literally means “health care at a distance”.

• Refers to “utilization of information and communication technology in health care”.

• Provision of health services from one location to another using a telecommunications medium. Includes concepts of surveillance, health promotion and public health functions.

• Recent addition – mHealth – provision of health care and public health, supported by mobile devices.
TELEHEALTH - ICT
Concept as old as telecommunication mediums
TELEMEDICINE MODELS

- **Synchronous, real-time**
 - Videoconferencing
 - Desktop sharing software
 - Remote hardware control

- **Asynchronous, store-and-forward**
 - Fax, Email, Server uploads
 - Automation NB component

- **Hybrid model**
ONSITE

Patient

Facilitator

VIRTUAL

ASYNCHRONOUS / STORE & FORWARD

ICT

SYNCHRONOUS / REALTIME

Healthcare professional
MOBILE REVOLUTION
CONNECTIVITY
The number of mobile subscriptions will soon overtake the world’s population

2002
There are over 1 billion mobile subscriptions, passing fixed-line users.

1978
First commercial cellular mobile services established.

1961
85 years later, fixed-line subscriptions reach 100 million.

1876
Alexander Graham Bell holds the first two-way telephone conversation.

GLOBAL POPULATION
FIXED-LINE SUBSCRIPTIONS
MOBILE SUBSCRIPTIONS

World Bank, 2012
The pace at which mobile phones spread globally is unmatched in the history of technology.

- Percent of the world's population with mobile cell signal:
 - 2003: 61%
 - 2010: 90%

Over 6 billion mobile subscriptions worldwide.

75% of the world now has access to a mobile phone.
THE DEVELOPING WORLD IS NOW MORE MOBILE THAN THE DEVELOPED WORLD

MOST PHONES ARE OWNED BY PEOPLE LIVING IN LOW-INCOME REGIONS

GROWTH OF GLOBAL MOBILE SUBSCRIPTIONS

ACCESS TO A RANGE OF MOBILE APPLICATIONS HAS INCREASED DRAMATICALLY THROUGHOUT THE LAST DECADE

World Bank, 2012
EXPLORING NOVEL SOLUTIONS

1. Novel screening technologies
2. Remote hearing and ear diagnosis
3. Tele-intervention

(Swanepoel & Hall, 2010)
WITKOPPEN CLINIC - DIEPSLOOT
WITKOPPEN CLINIC - DIEPSLOOT
TELE-AUDIOLOGY CLINIC
AUDIOMETRY OUTSIDE A BOOTH?

SUBJECTIVE ATTENUATION

- 3A & KW Cup
- 3A
- TDH39
AUDIOMETRY OUTSIDE A BOOTH?
AUDIOMETRY OUTSIDE A BOOTH?

- Validation study
- Within-subject repeated measures design comparing air (250 to 8000 Hz) and bone (250 to 4000 Hz) conduction thresholds in:
 1. Natural school environments
 2. Sound-treated booth
- 149 children (54% female) with an average age of 6.9 years (SD 0.6; Range 5 – 8) from 2 schools.
- Ave time between tests 9.3 days (± 8.4 SD) – tympanometry & otoscopy to confirm no transient middle-ear pathology
Audiometry Outside a Booth?

- **No significant differences** \((p > 0.01)\) between the natural and audiometric booth environments within subjects between:

 i. **Thresholds** recorded in natural and booth environments for air- and bone-conduction audiometry

 ii. **No of responses** to pure-tone presentations

 iii. **Average reaction time**

- Almost all air- (96%) and bone-conduction (97%) threshold comparisons between the natural and booth test environments were within **0 to 5 dB**
Conclusions: Automated audiometry provides reliable, accurate, and time-efficient hearing assessments for normal-hearing and hearing-impaired adults.
Conclusions:
- 29 reports (method of limits and method of adjustment); 1956 - 2011.
- Meta-analysis test-retest and accuracy for automated audiometry was within typical test-retest variability for manual audiometry
- Provides an accurate measure of hearing threshold, but data limited for (i) automated BC audiometry; (ii) children and difficult-to-test populations and; (iii) different types and degrees of hearing loss
TELE-AUDIOLOGY CLINIC
<table>
<thead>
<tr>
<th>View</th>
<th>VTC</th>
<th>Clinic</th>
<th>Test Date</th>
<th>Interpreted</th>
<th>Care Giver</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/03 09:10:38 PM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/03 03:17:11 AM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/02 11:34:24 PM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/02 11:12:28 PM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/01 02:07:25 AM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/01 01:40:56 AM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/10/01 01:21:33 AM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkappen</td>
<td>Witkappen</td>
<td>Witkappen</td>
<td>2012/09/25 04:27:14 AM</td>
<td>Violet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERRALS FOR SYNCHRONOUS TESTING:

- Complex cases
- Difficult-to-test patients
- Queries regarding validity of results
Conclusions: There were no clinically significant differences between the results obtained by remote intercontinental audiometric testing and conventional face-to-face audiometry.
REMOTE DIAGNOSIS OF EAR DISEASE

Background

• Global burden from chronic OM affect 65 – 330 million

• India & sub-Saharan Africa account for most deaths from OM

• COM – 1) risk of hearing loss and 2) life-threatening complications (e.g. meningitis, brain abscesses)

• Largely preventable and effective medical management

• Early detection and treatment at primary health care can reduce long-term morbidity and mortality

BUT - Poor access to specialist personnel limit diagnosis and appropriate treatment

(WHO, 2013; Acuin, 2004)
REMOTE DIAGNOSIS OF EAR DISEASE

- **Aim:** To evaluate the *effectiveness* and *accuracy* of *video-otoscopy* recordings by a trained *non-professional* for remote *diagnosis* of *ear disease* in children

- **Design:** Within-subject comparative design

- **Subjects:** 140 unselected children (2 – 15 yoa; mean 6.4 ±3.5 yoa; 44.3% female) attending a PHC

- **Context:**
REMOTE DIAGNOSIS OF EAR DISEASE

Equipment and procedures:
REMOTE DIAGNOSIS OF EAR DISEASE

Concordance of otomicroscopy and remote video-otoscopy

<table>
<thead>
<tr>
<th></th>
<th>Onsite diagnosis</th>
<th>Remote diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 272 ears</td>
<td>n = 269 ears</td>
</tr>
<tr>
<td>Otologist (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>75.8</td>
<td>58.4</td>
</tr>
<tr>
<td>Otitis media:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOM</td>
<td>16.5</td>
<td>16.7</td>
</tr>
<tr>
<td>CSOM</td>
<td>4.8</td>
<td>6.7</td>
</tr>
<tr>
<td>SOM</td>
<td>11.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Undetermined</td>
<td>7.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Review 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>62.1</td>
<td></td>
</tr>
<tr>
<td>Otitis media:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOM</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>CSOM</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>SOM</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Undetermined</td>
<td>23.4</td>
<td></td>
</tr>
</tbody>
</table>

R1 Kappa = 0.702
R2 Kappa = 0.740

Substantial agreement

Sens / Spec = 78% / 95%

Intra-rater diagnosis Kappa – 0.773
REMOTE DIAGNOSIS OF EAR DISEASE

CONCLUSIONS

• A non-professional, with no health care training, can be trained to acquire adequate video otoscopic recordings for remote otologic diagnosis

• Remote diagnosis accuracy is similar to inter- and intra-rater agreement previously reported

• Accompanied with audiometric data it can be a valuable diagnostic tool to underserved populations

• Video recordings improved diagnostic utility above images

• More experience may improve quality of recordings

(Biagio, Swanepoel, Lundberg & Laurent, IN PRESS)
CONCLUSION

• Rapidly changing world

• **Hearing loss and ear disorders** prevalent with inadequate human resources to meet **demands**

• Continued **growth in technology and connectivity** will change the way in which we deliver services. E.g.

 – *Remote hearing assessment*

 – *Remote ear diagnosis*

• Promise of **reaching** more patients, and especially those in **underserved** areas, **more effectively** (time and cost)