Infants, auditory steady-state responses (ASSRs), and clinical practice

Susan Small, PhD
University of British Columbia
Hamber Professor of Clinical Audiology

Phonak 2016, Atlanta, GA
October 2-5, 2016
Disclosure statement
BC Early Hearing Program (consultant): receive honorarium that contributes to my research program; Hamber Chair position: small contribution to research program

Other funding
UBC Faculty of Medicine
Overview of ASSRs

Clinical goal for ASSR testing?

- Identification of hearing loss
 - Air-conduction (AC) thresholds within normal limits?
 - AC thresholds elevated?
- If AC thresholds elevated, estimate bone-conduction (BC) thresholds
 - Type of hearing loss
 - Degree of conductive loss if present
- When hearing loss is identified, frequency- & ear-specific thresholds estimated to plan intervention services
What are ASSRs?
- Evoked potential that is repetitive in nature & is analyzed in terms of its frequency components rather than its waveform
- For high enough rates, a “sinusoidal” response is elicited with a frequency that matches the presentation or “modulation” rate

Amplitude maxima in adults (reviewed in Picton et al., 2003)
- 70-110 Hz modulation rate: 1^0 brainstem response (Picton et al., 2003)
- ~40 Hz modulation rate: 1^0 cortical & brainstem (Herdman et al, 2002)

- Most research and clinical applications for infants
 -- 40-Hz smaller in sleep in infants versus adults (Picton et al., 2003)
 -- 80-Hz or “brainstem”– most of research & today’s focus!

- Single- & multiple-ASSRs presented to two ears simultaneously
 -- depends on equipment available (focus on multiple ASSRs)
Why consider ASSRs for the clinic when we have brief-tone auditory brainstem responses (ABRs)?

-- brief-tone ABRs require considerable training & skill to interpret:
 o Visual replicability of wave V? Absence of response? Waveform too noisy to interpret? Amplitude & latency features across test conditions?

Infant ABR-- 2000 Hz
Large pediatric centres: skilled, experienced clinicians are available for ABR testing and do an excellent job!

Practical challenges:
(i) New clinicians
(ii) Clinicians with low infant-ABR case loads
(iii) Countries or regions within countries with fewer resources for training
 -- face difficulties conducting/interpreting AC & BC ABRs

Solutions:
(i) Method that requires less training & skill—ASSR?
(ii) Telehealth ABR (emerging but still requires skilled clinician)
Why ASSRs?

(i) frequency-specific stimuli
 - growing # of choices (advantage or disadvantage?)

(ii) response presence/absence is statistically determined
 - objective rather than subjective interpretation of waveforms

(iii) multiple stimuli can be presented to both ears simultaneously
 - efficient use of clinical time (2/3 time of ABR)

[van Maanen & Stapells, 2009]
One example of ASSR analysis
Comparison of response amplitude @ modulation rate to surrounding noise frequencies: F statistic (p < .05) (for review see Picton et al., 2003)

<table>
<thead>
<tr>
<th>Multiple 80-Hz ASSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency</td>
</tr>
<tr>
<td>Modulation rate</td>
</tr>
</tbody>
</table>

- **Time domain**
 - “sinusoid”
 - Average of accepted epochs

- **Frequency domain**
 - Fast Fourier Transform
 - 84.9 Hz
 - Amplitude: 24 nV
 - Onset phase: 320°
 - p value: 0.012
 - Circle radius: 19 nV
 - EEG noise: 10 nV

- **Polar plot**
 - amplitude
 - phase
 - circle radius

Green checkmark
Stimuli & EEG parameters
Many types of “frequency-specific” ASSR stimuli

brief tones

continuous

+ narrow-band chirps
-- previous presentation
with Dr. Y. Sininger
Bone oscillator coupling method in infants

BC ASSR threshold data (Small et al., 2007)

Recommend: Either

Bone oscillator placement

- **Hand-held** vs **elastic head band**
- **least likely to wake infant**
- **No significant differences (with training)**

- **No difference T versus M**
- **Significantly poorer F versus T & M**

Recommend: “T” position
Occlusion effect (OE): earphones in or out during infant BC testing?

Young infants (< 12 months)
- negligible OE

Older infants (1-2 years)
- emerging occlusion effect

(Small et al., 2007, Small & Hu, 2011)

Recommend:
0-1 year: leave earphones in
1-2 years +: remove earphones (conservative)
EEG recording set up

- can avoid post-auricular muscle response
EEG recording set up

- Can record EEG ipsilateral & contralateral to mastoid stimulated to assist with isolation of the test ear (more later in presentation)
Estimation of infant hearing thresholds
Definition of terms currently used for ABR (BCEHP, 2012)

Normal behavioural threshold:
- 25 dB HL

Normal ABR maximum level:
- ABR presentation level at which the majority of normal-hearing infants have a response present

\[\text{normal response must be present at normal ABR (dB nHL) max} \]

eHL correction:
- Correction factor used to estimate behavioural hearing threshold (dB HL) from the ABR threshold

\[\text{ABR threshold (dB nHL) - eHL correction (dB) = estimated behavioural threshold (dB HL)} \]
Normal ABR maximum levels & eHL correction for infants

Air- and bone-conduction ABR

<table>
<thead>
<tr>
<th></th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>BC</td>
<td>AC</td>
<td>BC</td>
<td>AC</td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BC EHP				
Normal ABR Max	35	20	35	na
(dB nHL)	30-35	20	30-35	na

<table>
<thead>
<tr>
<th>Range in literature</th>
<th>30-35</th>
<th>20</th>
<th>30-35</th>
<th>na</th>
</tr>
</thead>
</table>

BC EHP				
eHL correction (dB)	10	5	10	na
(dB nHL)	10-15	-5	5-10	na

<table>
<thead>
<tr>
<th>Range in literature</th>
<th>10-15</th>
<th>-5</th>
<th>5-10</th>
<th>na</th>
</tr>
</thead>
</table>

(BC-EHP 2012, 2015; Small & Stapells, Ch. 21, 2017)
Mean AC & BC ASSR thresholds across 11 infant & 10 adult studies

INFANT

Mean threshold (dB HL)

500 Hz 1000 Hz 2000 Hz 4000 Hz

AC: low > high frequencies
BC: low < high frequencies

Maturational air-bone gap

ADULT

Mean threshold (dB HL)

500 Hz 1000 Hz 2000 Hz 4000 Hz

AC & BC: similar across frequency
-- tendency for BC 500 Hz to be greater than other frequencies

(Lins et al, 1996; Cone-Wesson et al., 2002; John et al., 2004; Rance et al., 2005; Swanepoel & Steyn, 2005; Luts et al., 2006; Rance & Tomlin, 2006; van Maanen & Stapells, 2009; Ribeiro et al., 2010; Casey & Small, 2014; Valeriote & Small, 2015)

(Reviewed in Tlumak et al., 2007)
How well do AC ASSRs predict the audiogram in infants?

AC multiple ASSR versus AC behavioural thresholds/brief-tone ABR

Correlation coefficients:

Adult
- .70-.85 for 500 Hz
- .80-.95 for 1000-4000 Hz (for review see Tlumak et al., 2007)

Infant
- .97 @ 500-4000 Hz (includes profound loss with “no response”)
- .77-.89 @ 500-4000 Hz (excludes “no responses”)

(Van Maanen & Stapells, 2010)
Normal ASSR maximum levels & eHL correction for infants

Air- and bone-conduction ASSR

Preliminary & conservative!

<table>
<thead>
<tr>
<th>AM</th>
<th>AM/FM</th>
<th>COS³</th>
<th>AM²</th>
<th>(Ages:0-79 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>AC</td>
<td>AC</td>
<td>AC</td>
</tr>
</tbody>
</table>

10 studies

Normal ASSR Max (dB HL)

| 40-50 | 40-45 | 40 | 40 |

Range in literature

| 40-52 | 30 to >50 | 30-50 | 28-44 |

6 studies**

eHL correction (dB)

| 10-20 | 10-15 | 10-15 | 5-15 |

Range in literature

| -3 to 20 | 0-17 | 0 - 6 | -3 - 14 |

(Reviewed in Small & Stapells, Ch. 21, 2017: *Lins et al, 1996; John et al., 2004; Rance et al., 2005; Swanepoel & Steyn, 2005; Luts et al., 2006; Rance & Tomlin, 2006; van Maanen & Stapells, 2009; Ribeiro et al., 2010; Casey & Small, 2014; Valeriote & Small, 2015;**Rance & Briggs, 2002; Hanh et al., 2006; Luts et al, 2006; wan Maanen & Stapells, 2010; Rodrigues & Lewis, 2010; Chou et Al., 2012)
How well do BC ASSRs predict the audiogram in infants?

BC multiple ASSR versus AC behavioural thresholds/brief-tone ABR

Correlation coefficients:

Adult (sensorineural & simulated)

- .71 for 500 Hz
- .84-.94 for 1000-4000 Hz (Ishida, Cuthbert & Stapells, 2011)
- Adult BC-ASSR data is promising

Infant

- No correlational data available
Valeriote & Small (in prep):
Infant: normal hearing versus mild conductive loss at 500 Hz

AC & BC ASSR data fall within ABR normal maximum levels
AC: trend for elevated ASSR thresholds -- but overlap for NH and mild CHL for ASSR

BC: CHL and NH did not differ significantly as expected

Conductive hearing loss (CHL) (mild)

Valeriote & Small (in prep)
Case 1: Adult with asymmetric conductive loss (stapes fixation bilaterally, poor surgical outcome left)

Behavioural
Open: Right AC
Filled: Left AC

ASSR
Open: Right AC
Filled: Left AC

Small, unpublished
<table>
<thead>
<tr>
<th></th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM/FM</td>
<td>BC</td>
<td>BC</td>
<td>BC</td>
<td>BC</td>
</tr>
<tr>
<td>AM²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 studies (0-24 mos)</td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Normal ASSR Max (dB HL)</td>
<td>30-40</td>
<td>10-30</td>
<td>30-40</td>
<td>10-40</td>
</tr>
<tr>
<td>Range in literature</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>BC EHP eHL correction (dB)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Range in literature</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

(Small & Stapells, Ch. 21, 2017)
Are multiple ASSRs more or less efficient than single ASSRs?

NH infants @ 60 dB SPL

- **Amplitude**
 - Single > Multiple
- **Efficiency**
 - Multiple > Single

(Hatton & Stapells, 2011 & 2013)

- Note: stimuli with broader spectra or higher presentation levels exhibit > interactions (Ishida & Stapells, 2012; Mo & Stapells, 2008, Wood, 2009)

Recommend:
- Low-mid intensities – multiple ASSR
- High intensities – consider single ASSR
What about simultaneous AC & BC multiple ASSRs?

- **New study from Cuba** (Torres-Fortuny et al., 2016)
 -- compared ASSR amplitudes elicited to AC & BC stimuli at the same time in both ears to only one mode at a time in NH infants

<table>
<thead>
<tr>
<th>AC: 2000 Hz AM tones (L: 111.4 Hz; R: 115 Hz)</th>
<th>simultaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC: 500 Hz AM tones (L: 104.2 Hz; R: 107.8 Hz)</td>
<td></td>
</tr>
<tr>
<td>AC: 2000 Hz AM tones (115 Hz)</td>
<td>only stimulus</td>
</tr>
<tr>
<td>BC: 500 Hz AM tones (115 Hz)</td>
<td>only stimulus</td>
</tr>
</tbody>
</table>

- No significant reduction in amplitude for simultaneous AC/BC conditions; more data needed but clinical potential ...
AC & BC ASSRs & severe-to-profound loss

Caution: can elicit vestibular responses to high-intensity AC & BC stimuli using ABR & ASSRs

- ABR—negative wave at ~ 3 ms at 95 & 110 dB nHL due to activation of the vestibular system—not auditory in nature but easy to identify in the waveform (Stapells, 2011)

- ASSRs can also be elicited from vestibular sources—cannot be differentiated from auditory responses – no time domain waveform available
 -- spurious responses recorded at 50-60 dB HL for BC ASSRs; 118-120 dB HL for AC ASSRs (Small & Stapells, 2004)
Isolation of test cochlea
BC ABR: Utilize ipsilateral/contralateral asymmetries

- Expected pattern for normal cochleae up to 1-2 years of age -- normal hearing or conductive loss (e.g., aural atresia)
 [e.g., Foxe & Stapells, 1993; Stapells & Ruben, 1989; Stapells & Mosseri, 1991]

BC left mastoid

2000 Hz @ 40 dB nHL

BC right mastoid

Amplitude: contra smaller than ipsi

Contra

Latency: contra later than ipsi
Factors contributing to ipsi/contra asymmetries?

1. Greater IA (10-35 dB) compared to adults due to unfused cranial sutures
 (Yang & Stuart 1987; Small & Stapells, 2008; Hansen & Small, 2012)

2. Infant-adult differences in positioning of neural generators

 ➢ Infant BC ABR/ASSRs show consistent ipsi/contra asymmetries @ near-threshold levels (adult do not)
 BC ABR: 500 & 2000 Hz (e.g., Stapells & Ruben, 1989)
 BC ASSR: 500 & 4000 Hz (less consistent @1000 & 2000 Hz) (Small & Stapells, 2008; Small & Love, 2014)

 ➢ more research needed for ASSRs to determine accuracy in infants with hearing loss

(see for review: Small & Stapells, 2017)
What if ipsi/contra asymmetries in BC ABR or ASSRs are ambiguous?

➤ **MASK!**

Main reason masking not routinely used clinically for infant BC ABRs: -- effective masking levels (EMLs) for BC ABR stimuli in young infants have not been measured directly

➤ We estimated EMLs for BC ASSRs using binaural AC masking

(Hansen & Small, 2012; Small, Smyth & Leon, 2014)
Recommended EMLs (dB SPL) for BC ASSR stimuli presented at 35 dB HL

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant</td>
<td>81</td>
<td>68</td>
<td>59</td>
<td>45</td>
</tr>
<tr>
<td>Adult</td>
<td>66</td>
<td>63</td>
<td>59</td>
<td>55</td>
</tr>
</tbody>
</table>

* Significant infant minus adult EML difference (dB)

- Frequency-dependent infant-adult differences in EMLs except at 2000 Hz

(Hansen & Small, 2012; Small, Smyth & Leon, 2014)
Clinical implications

AC ASSRs

- Screening for normal hearing @ normal maximum levels 500, 1000, 2000 & 4000 Hz
- Threshold estimation @ 500, 1000, 2000 & 4000 Hz
 - More data to assess accuracy of recommended eHL corrections

BC ASSRs

- Screening for normal hearing @ normal maximum levels 500, 1000, 2000 & 4000 Hz
- Threshold estimation @ 500, 1000, 2000 & 4000 Hz
 - More data to assess accuracy of recommended eHL corrections
 - Accuracy of normal levels need to be verified for larger # of infants with hearing loss
Future research needed

AC ASSRs

** more infants with hearing loss
-- Comparisons to AC brief-tone ABR & behavioural data for all stimuli available in clinical equipment

BC ASSRs

** many more infants with hearing loss
-- Comparisons to AC brief-tone ABR & behavioural data for all stimuli available in clinical equipment

** more work needed on isolation of test ear

Simultaneous AC & BC ASSRs

** more work on infants with normal hearing and hearing loss
Questions?