Optimizing outcomes with electric and acoustic stimulation (EAS): speech understanding, music perception, and auditory cortical activation

René Gifford and Iliza Butera

A Sound Foundation Through Early Amplification

Department of Hearing and Speech Science
Vanderbilt University Medical Center
DISCLOSURES

Member of Audiology Advisory Board for:

• Advanced Bionics
• Cochlear Americas
• Frequency Therapeutics
Bilateral CI = standard of care treatment for bilateral severe-to-profound SNHL

e.g., Balkany et al. 2008; Papsin & Gordon, 2008; Peters et al., 2010; Ramsden et al., 2012

What amount of acoustic hearing is beneficial in a bimodal hearing configuration?
2 primary theories of bimodal benefit:

1) Segregation
 • LF acoustic cues (e.g., F0 periodicity) → allow for comparison across the ears to form *perceptual streams* to separate the target from the background noise (e.g., Kong *et al.* 2005; Chang *et al.* 2006; Qin & Oxenham 2006)

2) Glimpsing
 • spectral-dependent SNR varies over time, allowing for target to be “glimpsed” so that SNR modulations over time → better perception LF target (e.g., Kong & Carolyn 2007; Li & Loizou 2008; Brown & Bacon 2009)
Tested for dead regions with TEN test

Presentation level in non-CI ear →

65 dBA signal + NAL-NL1 amplification

n = 12

![Graph showing percent correct responses for different conditions.](image)

- **Adults, n = 12**
- **500-Hz band**

Condition
- A only
- E only
- BIMODAL
 - 125 Hz
 - 250 Hz
 - 500 Hz
 - 750 Hz
 - Wideband

Percent Correct
- 0 to 100

- Children (n = 19) & adults (n = 10) w/ normal hearing
 - Mean age = 9.2 years
 - Range 6 to 12 years
- CI simulations (e.g., Litvak et al., 2007)
- Bimodal simulations: 90 dB/oct
 - <250, <500, <750, <1000, and <1500 Hz
- BabyBio sentences at variable SNR
 - SNR \rightarrow ~50% for “CI-only” condition
 - Mean = 6.6 dB
Hypotheses

• Children will need a broader acoustic BW for bimodal benefit than adults.
 • Adults are better able to combine top-down and bottom-up processing.
 • Stelmachowicz et al., 2000, 2001, 2004, 2007; Pitmann et al., 2005

• Bimodal benefit will increase with increasing BW for children, as with adults.

Mean SNR: +6.2 dB
n = 10
adult NH

750-Hz band

SNR: +5 dB

percent correct

n = 10 adult NH

condition

A only

E only

Bimodal
BIMODAL

C1

HA
Gifford et al. (in prep).

- Mean age: 9.5 yrs
 - range: 6.8 to 13.3 yrs
- 3 male, 9 female
- Mean age at CI: 6.5 yrs
 - range 1.3 to 10.7 yrs
- 65 dBA signal + DSL v5 amplification
Gifford et al. (in prep).

A	E
250 Hz | 250 Hz | 250 Hz | 250 Hz | 250 Hz

Mean SNR: -1.6 dB

n = 12 peds bimodal
Gifford et al. (in prep).

Mean + SNR: +2.5 dB
Mean - SNR: -3.9 dB
Gifford et al. (in prep).

Mean + SNR: +2.5 dB
Mean - SNR: -3.9 dB
Summary

• Significant bimodal benefit observed with acoustic hearing < 250 Hz
• Children may be using different cues for bimodal listening (streaming > glimpsing?)
 – But, broader BW did not impair performance
• Clinical Rec: Aid that non-CI ear!
We spend a great deal of time talking about speech understanding. What about music? ...and might children be different?
Review: bimodal benefit for speech understanding

Adult
n = 48

Peds
n = 12
Adult bimodal listeners

n = 48

percent correct

speech measure

CNC
BabyBio
BabyBio +5
Pediatric bimodal listeners

n = 12

percent correct

speech measure

VANDERBILT UNIVERSITY MEDICAL CENTER
Speech & music perception: bimodal adults and children

Behavioral measures:
• isochronous melody recognition
 • ABC song, Old MacDonald, Yankee Doodle, London Bridge, This Old Man, BINGO, Frere Jacques
• pitch discrimination (UW-CAMP)
• chord discrimination

Subjective qualitative judgments:
• visual analog scale (VAS)
• favorite music

Neuroimaging
• Functional near infrared spectroscopy (fNIRS)
Speech & music perception: bimodal adults and children

Behavioral measures:
• isochronous melody recognition
 • ABC song, Old MacDonald, Yankee Doodle, London Bridge, This Old Man, BINGO, Frere Jacques
• pitch discrimination (UW-CAMP)
• chord discrimination

Subjective qualitative judgments:
• Visual analog scale (VAS)
• favorite music

Neuroimaging
• Functional near infrared spectroscopy (fNIRS)

• HA alone
 • DSL v5
• CI alone
 • 20-25 dB HL
• BIMODAL
 • n = 4
 • 10, 12, 15, & 17 years

More later!
HA > CI
Bimodal = HA

NH mean

percent correct

isochronous melodies

chords

music measure

VANDERBILT UNIVERSITY MEDICAL CENTER

HA
CI
BIMODAL
HA $<$ CI
(i.e. HA better than CI)
Bimodal = HA
Subjective ratings: Judgment of sound quality
Gabrielsson et al., 1988. JSLHR. 31:166-177.
Subjective ratings

![Bar chart showing VAS ratings for different listening configurations: HA, CI, BIMODAL.](image-url)
Subjective ratings

VAS rating

listening configuration

HA CI BIMODAL

VANDERBILT UNIVERSITY MEDICAL CENTER
Subjective ratings

VAS rating

listening configuration

HA
CI
BIMODAL

VANDERBILT UNIVERSITY MEDICAL CENTER
Functional neuroimaging
Functional neuroimaging for speech & music perception

• Could be beneficial to guide clinical decisions and counseling, particularly in young children
 – Candidacy recommendations (re: 2nd CI)
 – Therapy recommendations
 – Counseling for expectations
 – Programming strategies
Functional near-infrared spectroscopy (fNIRS)

- BOLD signal
- Safe with CIs
- No electrical artifact
- Pediatric friendly
Methods

• Passive listening task
• 9 sentences per 20s block
• Multiple-choice question after each block (to maintain attention)

Which sentence did you hear?

A) I need a second cup of coffee.
B) Do you still have the lizard?
C) My battery is charging now.
D) Speak a little more slowly.
Time

Frequency (kHz)

Unfiltered Speech

Speech-correlated Noise
CI only – Unintelligible Speech-correlated Noise

Bimodal – Unintelligible Speech-correlated Noise
CI only – Speech > Noise

Bimodal – Speech > Noise

<table>
<thead>
<tr>
<th>speech measure</th>
<th>percent correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>80</td>
</tr>
<tr>
<td>AzBio</td>
<td>80</td>
</tr>
<tr>
<td>AzBio +5</td>
<td>80</td>
</tr>
</tbody>
</table>
Summary

Bimodal hearing → significant benefit over CI alone
• Speech understanding in quiet & noise
• Music perception tasks
• Subjective ratings of music sound quality
• Auditory cortical activation

Significant bimodal benefit can be obtained with very little acoustic hearing
• 250 to 500 Hz
• Increases in acoustic BW → increased performance
Summary

Functional neuroimaging:
• Greater understanding re: neural integration of electric & acoustic stimuli
• Guidance for clinical decision making?
• Outcomes?

What might the future hold?
• Music coding strategies for CI
• Bilateral CI + acoustic hearing preservation
• HAs & prescriptive fittings designed for music listening
Thank you for your attention.
rene.gifford@Vanderbilt.edu

A. Patients with dead region

B. Patients without dead region

CNC words

12-percentage points