Hearing well and being well – a strong scientific connection
Clinical implementation of a listening effort measure (ACALES) - Melanie Krüger

November 14–16, 2019 I Frankfurt am Main, Germany
Listening effort

“the deliberate allocation of mental resources to overcome obstacles in goal pursuit when carrying out a listening task.” (Pichora-Fuller et al., 2016)

- An important factor in cocktail party situation
- Various measurement methods: objective (e.g. pupilometry, EEG) and subjective (scales and questionnaires).
- The practical effect of subjective methods: individual evaluation of the benefits of hearing systems in acoustically demanding everyday situations.
Adaptive Categorical Listening Effort Scaling

- A = Adaptive
- CA = Categorical
- L = Listening
- E = Effort
- S = Scaling

- Subjective rating of listening effort

- Responses were given on a 13-step scale with an extra category “only noise”
Adaptive Categorical Listening Effort Scaling

- Speech in background noise
 - Matrix sentences test with the structure:

- Three sentences in a row
 - First sentence: First impression of the listening situation
 - Second sentence: Initial information about the perceived listening effort
 - Third sentence: Final decision about the perceived listening effort
Adaptive Categorical Listening Effort Scaling

- Background noise
 - stationary e.g. Olnoise
 - fluctuating e.g. IFFM
 - complex scenarios e.g. restaurant

- Task

 „How much effort is required for you to follow the speaker?“
Adaptive Categorical Listening Effort Scaling

- The ACALES method is divided into three phases (Krueger et al., 2017):

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for "no effort" and "extreme effort"
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for "no effort" and "extreme effort"
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for “no effort“ and “extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for "no effort" and "extreme effort"
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

1. Determination of boundaries for „no effort“ and „extreme effort“
Adaptive Categorical Listening Effort Scaling

- The ACALES method is divided into three phases (Krueger et al., 2017):

1. **Determination of boundaries for „no effort“ and „extreme effort“**
 - „no effort“ (1 ESCU) at 9 dB SNR
 - „extreme effort“ (13 ESCU) at -12 dB SNR
Adaptive Categorical Listening Effort Scaling

- The ACALES method is divided into three phases (Krueger et al., 2017):

 1. Determination of boundaries for „no effort“ and „extreme effort“
 2. Estimation of SNR for categories
Adaptive Categorical Listening Effort Scaling

2. Estimation of SNR for categories

![Graph showing the relationship between SNR and listening effort](image-url)
Adaptive Categorical Listening Effort Scaling

- The ACALES method is divided into three phases (Krueger et al., 2017):
 1. Determination of boundaries for „no effort“ and „extreme effort“
 2. Estimation of SNR for categories
Adaptive Categorical Listening Effort Scaling

- The ACALES method is divided into three phases (Krueger et al., 2017):

1. Determination of boundaries for „no effort“ and „extreme effort“
2. Estimation of SNR for categories
3. Recalculation of boundaries and SNRs
Adaptive Categorical Listening Effort Scaling

- The ACALES method is divided into three phases (Krueger et al., 2017):

1. Determination of boundaries for „no effort“ and „extreme effort“
2. Estimation of SNR for categories
3. Recalculation of boundaries and SNRs
Preliminary study with CI users
<table>
<thead>
<tr>
<th>Test</th>
<th>Speech intelligibility</th>
<th>Listening effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oldenburg sentence test (OLSA)</td>
<td>Adaptive categorical listening effort scaling (ACALES)</td>
<td></td>
</tr>
</tbody>
</table>
Methods

<table>
<thead>
<tr>
<th>Speech intelligibility</th>
<th>Listening effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Oldenburg sentence test (OLSA)</td>
</tr>
<tr>
<td>Task</td>
<td>Adaptive categorical listening effort scaling (ACALES)</td>
</tr>
<tr>
<td>Repeat all recognized words</td>
<td>„How much effort is required for you to follow the speaker?“</td>
</tr>
<tr>
<td>Example: „Peter sold two cheap toys.“</td>
<td>Test material: Three sentences of the Oldenburg sentence test in a row.</td>
</tr>
</tbody>
</table>
Methods

<table>
<thead>
<tr>
<th></th>
<th>Speech intelligibility</th>
<th>Listening effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Oldenburg sentence test (OLSA)</td>
<td>Adaptive categorical listening effort scaling (ACALES)</td>
</tr>
<tr>
<td>Task</td>
<td>Repeat all recognized words</td>
<td>„How much effort is required for you to follow the speaker?“</td>
</tr>
<tr>
<td></td>
<td>Example: „Peter sold two cheap toys.“</td>
<td>Test material: Three sentences of the Oldenburg sentence test in a row.</td>
</tr>
<tr>
<td>Background noise:</td>
<td>Fluctuating „International Female Fluctuating Masker“ (IFFM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary background noise of the Oldenburg sentence test (Olnoise)</td>
<td></td>
</tr>
</tbody>
</table>
Methods

<table>
<thead>
<tr>
<th></th>
<th>Speech intelligibility</th>
<th>Listening effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Oldenburg sentence test (OLSA)</td>
<td>Adaptive categorical listening effort scaling (ACALES)</td>
</tr>
<tr>
<td>Task</td>
<td>Repeat all recognized words</td>
<td>„How much effort is required for you to follow the speaker?“</td>
</tr>
<tr>
<td></td>
<td>Example: „Peter sold two cheap toys.“</td>
<td>Test material: Three sentences of the Oldenburg sentence test in a row.</td>
</tr>
<tr>
<td>Background noise:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuating „International Female Fluctuating Masker“ (IFFM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stationary background noise of the Oldenburg sentence test (Olnoise)</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>Threshold for score of 50% (SRT)</td>
<td>Subjective listening effort</td>
</tr>
</tbody>
</table>
Participants

Group 1: Participants with bilateral CI provision

- Aided free field audiogram separated by ears
- Aided threshold around 30 dB HL
Participants

Group 2: Participants with bimodal provision

- Aided free field audiogram separated by ears
- CI threshold of the better ear around 30 dB HL
- HI threshold up to 1.5 kHz around 30 dB HL and a wider spread for higher frequency
Results: Speech intelligibility

Group 1: bilateral

<table>
<thead>
<tr>
<th></th>
<th>SRT [dB SNR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFM</td>
<td>10</td>
</tr>
<tr>
<td>Olnoise</td>
<td>6</td>
</tr>
</tbody>
</table>

We help people to hear better.
Results: Speech intelligibility

- Group 1: bilateral
 Improvement of 3.2 dB (IFFM) and 0.7 dB (Olnoise)
Results: Speech intelligibility

- **Group 1: bilateral**
 Improvement of 3.2 dB (IFFM) and 0.7 dB (Olnoise)

- **Group 2: bimodal**
 Improvement of 1.9 dB (IFFM) and 1.5 dB (Olnoise)
Results: Speech intelligibility

Speech intelligibility is better with a bimodal or bilateral provision
Results: Speech intelligibility

- **Group 1: bilateral**
 Two participants with no benefit of the bilateral provision

- **Group 2: bimodal**
 Participant #15 has no benefit of the bimodal provision in both noises
 Another participant with no benefit
Results: Listening effort

Measurement data of one participant
Results: Listening effort

Measurement data of one participant with the corresponding listening effort function
Results: Listening effort

Averaged listening effort function for the measurement condition „one CI“

With increasing SNR the perceived listening effort decreases
Results: Listening effort

- **Group 1: bilateral**
 Reduced listening effort with two CIs
Results: Listening effort

- **Group 1: bilateral**
 Reduced listening effort with bilateral provision

- **Group 2: bimodal**
 Reduced listening effort with bimodal provision
Results: Listening effort

- **Group 1: bilateral**
 - All participants have a benefit with a bilateral provision in Olnoise
 - Two participants with increased listening effort in IFFM

- **Group 2: bimodal**
 - Four participants with increased listening effort in Olnoise and IFFM
Summary

- ACALES is fast and easy.
- The adaptive scaling method can be used with CI users.
- ACALES is able to detect differences between CI only and bilateral or bimodal provision.
- It is not possible to make predictions about improvements in listening effort based on benefit in speech tests.
- **Why do some CI users get a benefit from bilateral or bimodal provision and others do not?**
Outlook

- How does the perceived listening effort differ between the participants?

→ Longitudinal study in cooperation with Evangelisches Krankenhaus Oldenburg (Universitätsklinik für Hals-Nasen-Ohren-Heilkunde)
We help people to hear better.

Thank you for your attention!

HörTech gGmbH
Marie-Curie-Str. 2
D-26129 Oldenburg, Germany

Phone: +49 441 2172-200
Fax: +49 441 2172-250

info@hoertech.de

www.hoertech.de