Reduced listening effort in noise ### with StereoZoom^{TM1} ## To investigate listening and memory effort with StereoZoom via: - Objective EEG measurement & - Subjective ratings Changes in the alpha frequency band (8–12 Hz) reflect changes in listening effort^{2,3} StereoZoom: wirelessly connected binaural, directional microphone technology to improve speech intelligibility in loud background noise ## Comparison of listening effort of: VS #### Task: Word Recall: 2 sentences consecutively percentage of correctly recalled sentence parts #### Measures: - Recording of brain activity with EEG - ► Subjective rating of effort dB diffuse cafeteria noise Objective EEG measurement Lower alpha spectral density in noise with: Phonak SPILN < Competitor SPILN 2. Subjective effort ratings Phonak SPILN < Competitor SPILN Subjective listening and memory effort ratings correlates with objective EEG findings #### Subjective and EEG measuring show less effort with StereoZoom Speech signal easier to understand Less cafeteria noise to be suppressed by brain Lower brain activity = lower listening effort Winneke, A., et al. (2018). Less listening- and memory effort in noisy situations with StereoZoom. Phonak Field Study News, retrieved $^{^2} Winneke, A., et al. (2016). Neuroergonomic assessment of listening effort in older call center employees. Proceedings of the 9<math>^{\rm th}$ AAL Kongress, Frankfurt/Main. ³ Winneke, A., et al. (2016). Reduction of listening effort with binaural algorithms in hearing aids: an EEG Study. Poster presented at the 43rd Annual Scientific and Technology Meeting of the American Auditory Society, Scottsdale, AZ.